Pix2Pix 使用指南:从原理到项目应用

Pix2Pix

    • Pix2Pix 介绍:使用条件 GAN 进行图像到图像的转换
    • Pix2Pix 原理
      • Pix2Pix 模型结构
        • 生成器:Unet结构
        • 判别器:PatchGAN
        • 目标函数
          • 目标函数总结
    • Pix2Pix 项目使用

 


Pix2Pix 介绍:使用条件 GAN 进行图像到图像的转换

Pix2Pix 论文:https://arxiv.org/abs/1611.07004

Pix2Pix 的性质是图像转换。

图像转换,指从一副图像到另一副图像的转换。

可以类比机器翻译,一种语言转换为另一种语言。

这个转换过程是通过建立一个模型,利用生成对抗网络(GANs)的算法,大量的成对图像数据,如简笔画和真实照片,将输入的简笔画转换成逼真的照片。

 


Pix2Pix 原理


输入x:简笔画

生成器G:处理简笔画,生成的模拟图

判别器D:

  • 输入 {简笔画、生成图},判断为 fake
  • 输入 {简笔画、真实图},判断为 real

Pix2Pix 模型结构

生成器:Unet结构


编码器:输入图像,输出特征

解码器:输入特征,输出图像

UNet:对编码-解码器改进的模型,主要是用于医学影像上。

在编码器和解码器之间增加了跳跃连接,使得同一级别的特征图可以在不同阶段进行拼接和融合。

假设我们有一个医学图像分割任务,输入是一张CT扫描图像,输出是图像中病变区域的分割结果。

解码器主要依赖于局部特征,例如像素的颜色、纹理等。

然而,对于复杂的图像分割任务来说,局部特征可能不足以准确地区分不同的区域。

UNet模型引入跳跃连接,关联到上下文信息、全局特征。

而全局特征可能包括图像中病变区域的大小、形状、位置等信息。

通过在解码器中引入跳跃连接,这些全局特征可以指导像素的分类,帮助模型更好地识别病变区域。

判别器:PatchGAN

PatchGAN是为了解决图像处理领域中的一类问题——如何有效地处理模糊和噪声——而提出的。

具体来说,它是为了解决在图像降质过程中产生的模糊和噪声问题,例如在拍照时由于光线不足、镜头移动等因素导致的图像模糊,或者在图像传输过程中引入的噪声等。

通过学习如何处理这些不良因素,PatchGAN能够让模糊的图像变得更加清晰,从而提高图像的质量。

假设你有一张照片,这张照片的某个部分被划出了一个小的正方形区域,而这个区域里面的内容被模糊处理了。

这个模糊处理的部分就叫做"Patch",而"PatchGAN"就是一种专门用来处理这样模糊图像的算法。

在PatchGAN训练判别器时,不是把整个图片直接放进判别器中进行判别,而是像下面这样,先把一幅图切成 N x N 的小块, 再把每个小块送入判别器中进行判别,最后把整体的结果取平均。


图片来源:CSDN@几维wk

这样划分的好处是,评估高频信息(细节)。

在原始的GAN中,判别器只会输出一个评价值,评价生成器生成的整幅图像。

但是PatchGAN的设计不同,它被设计成全卷积的形式。

这意味着,图像经过各种卷积层后,不会进入全连接层或激活函数,而是使用卷积将输入映射为一个 N*N 的矩阵。

这个矩阵就像原始GAN中的评价值,但它评价的是生成器生成的图像中的每一个小区域。

每个点(true或false)代表原始图像中的一小块区域的评价值,这就是“感受野”的应用。

使用 N*N 的矩阵来评价整幅图像,可以关注更多的区域,这就是PatchGAN的优势。

举例,假设我们有一个 64x64 的图像,我们的 PatchGAN 有 16 个 patch,每个 patch 是 8x8 的。这意味着我们的判别器会输出一个 16x16 的矩阵。每个元素值代表对应 patch 在真实图像中的存在概率。

例如,如果判别器判断第 1 行第 1 列的 patch 是真实的,那么矩阵的第 1 行第 1 列的值就会接近 1,而其他值则会接近 0。如果它判断第 2 行第 3 列的 patch 是生成的,那么矩阵的第 2 行第 3 列的值就会接近 0,而其他值则会接近 1。

通过这种方式,PatchGAN 能够关注到图像中的各个区域,而不仅仅是全局的图像。这对于生成图像的细节部分特别有用,因为往往细节部分更能决定一张图像的真实性。

目标函数

生成器优化目标: L c G A N ( G , D ) = E x , y [ log ⁡ D ( x , y ) ] + E x , z [ log ⁡ ( 1 − D ( x , G ( x , z ) ) ] \begin{aligned}\mathcal{L}_{cGAN}(G,D)=&\mathbb{E}_{x,y}[\log D(x,y)]+\\&\mathbb{E}_{x,z}[\log(1-D(x,G(x,z))]\end{aligned} LcGAN(G,D)=Ex,y[logD(x,y)]+Ex,z[log(1D(x,G(x,z))]

  • L c G A N ( G , D ) L cGAN (G,D) LcGAN(G,D):这是 cGAN 的损失函数,它关于生成器G和判别器D优化。损失函数的目标是最小化生成器生成的假样本被判别器识别的概率,同时最大化判别器正确识别真实样本的概率。

  • E x , y [ l o g D ( x , y ) ] Ex,y[logD(x,y)] Ex,y[logD(x,y)]:这部分是期望真实样本被判别器识别的概率。x是真实样本,y是对应的条件标签,D(x,y) 是判别器对于输入 (x,y) 判断为真实样本的概率。

  • E x , z [ l o g ( 1 − D ( x , G ( x , z ) ) ) ] Ex,z[log(1−D(x,G(x,z)))] Ex,z[log(1D(x,G(x,z)))]:这部分是期望生成器生成的假样本被判别器识别的概率。x是真实样本,z是随机噪声,G(x,z)是生成器根据真实样本x和随机噪声z生成的假样本。

    D ( x , G ( x , z ) ) D(x,G(x,z)) D(x,G(x,z)) 是判别器对于输入 ( x , G ( x , z ) ) (x,G(x,z)) (x,G(x,z)) 判断为真实样本的概率,因此我们需要最大化它的相反数,即 ( 1 − D ( x , G ( x , z ) ) ) (1−D(x,G(x,z))) (1D(x,G(x,z)))

    通过最小化这个损失函数,cGAN可以训练出能够生成满足给定条件约束的样本的生成器。

举例:

传统的损失函数,如L2或L1损失,旨在最小化生成样本与真实样本之间的差异。这种差异度量方法在生成对抗网络(GAN)中同样重要,因为生成器不仅要能够欺骗判别器,还需要生成与真实数据相似度尽可能高的假样本。

当我们在GAN的目标函数中加入传统的损失时,生成器就需要在满足判别器的条件下,尽可能地接近真实样本。这使得生成器不仅要关注欺骗判别器,还要关注生成样本的质量。因此,这种结合可以产生更清晰、更逼真的假样本。

L2损失会最小化每个特征的平方差,因此生成的假样本可能会更加平滑,而无法捕捉到真实样本中的一些细节和变化。

相反,如果使用L1损失来优化生成器,我们可能会发现生成的假样本更加锐利和清晰。

这是因为L1损失会最小化每个特征的绝对差值,因此生成的假样本可能会更加突出真实样本中的一些边缘和细节。

所以,在GAN的目标函数中混入L1损失相比L2损失能够带来更好的效果。因为L1损失能够更好地捕捉到真实样本中的边缘和细节,从而产生更清晰、更逼真的假样本。

这个公式的目的是最小化生成模型G生成的假样本与真实样本之间的差异。具体来说,它计算了真实样本y与生成模型G生成的假样本G(x, z)之间的L1距离(即绝对值差异的总和)。

最终目标函数:

目标函数总结

判别器的优化目标,就是一个GAN

生成器的优化目标,有俩个:

  • 总体相似程度:L1距离,真实标签-生成图(x,z),引入噪声z是为了提高生成图的丰富程度

  • 细节相似程度:对抗损失 + 评估高频信息(细节)

Pix2Pix 项目使用

Pix2Pix 本地部署:https://www.iotword.com/15549.html

Pix2Pix 项目代码:https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

Pix2Pix 代码(国内下载链接,很快):https://gitcode.net/zhenzhidemaoyi/pytorch-CycleGAN-and-pix2pix

手把手教学使用链接:https://blog.csdn.net/qq_42691298/article/details/127460187

这篇写的太详细,手把手教学,我真没必要再写了。
 


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/218246.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

吉他初学者学习网站搭建系列(1)——目录

文章目录 背景文章目录功能网站地址网站展示展望 背景 这个系列是对我最近周末搭建的吉他工具类平台YUERGS的总结。我个人业余爱好是自学吉他,我会在这个平台中动手集成我认为很有帮助的一些工具,来提升我的吉他水平和音乐素养,希望也可以帮…

C++初阶(十二)string的模拟实现

📘北尘_:个人主页 🌎个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上,不忘来时的初心 文章目录 一、string类的模拟实现1、构造、拷贝构造、赋值运算符重载以及析构函数2、迭代器类3、增删查…

LeetCode.203移除链表元素(原链表操作、虚拟头结点)

LeetCode.203移除链表元素 1.问题描述2.解题思路3.代码 1.问题描述 给你一个链表的头节点 head 和一个整数 val ,请你删除链表中所有满足 Node.val val 的节点,并返回 新的头节点 。 示例 1: 输入:head [1,2,6,3,4,5,6], val …

【linux】基本指令(中篇)

echo指令 将引号内容打印到显示屏上 输出的重定向 追加的重定向 输出的重定向 我们学习c语言的时候当以写的方式创建一个文件,就会覆盖掉该文件之前的内容 当我们以追加的方式打开文件的时候,原文件内容不会被覆盖而是追加 more指令 10.more指令…

VUE限制文件上传大小和上传格式

<el-form-item label"图片&#xff1a;" prop"tempImagePath"><el-uploadclass"upload"accept"image/jpeg":show-file-list"false"list-type"picture-card":headers"{ token: token}":action&…

openEuler 22.03 LTS x86_64 cephadm 部署ceph 16.2.14 未完成 笔记

环境 准备三台虚拟机 10.47.76.94 node-1 10.47.76.95 node-2 10.47.76.96 node-3 下载cephadm [rootnode-1 ~]# yum install cephadm Last metadata expiration check: 0:11:31 ago on Tue 21 Nov 2023 10:00:20 AM CST. Dependencies resolved. Package …

3.1 CPU内部结构与时钟与指令

CPU内部结构 总线一些自定义部件总线图内存指令执行流程:取指令,译码,执行pc做的事内存地址寄存器内存缓存寄存器指令寄存器,译码第一步指令寄存器传递地址到内存地址寄存器指令MOV_A的过程(译码第二步)第一条指令执行完毕第三条指令的执行第四条指令第四条指令不同的执行流程…

Another app is currently holding the yum lock; waiting for it to exit...

今天使用yum进行下载的时候报错 解决办法&#xff1a; 执行 rm -f /var/run/yum.pid 然后重新运行yum指令即可&#xff0c;发现已经可以正常下载啦&#xff01;

2023年【安全员-C证】考试试卷及安全员-C证试题及解析

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 安全员-C证考试试卷是安全生产模拟考试一点通生成的&#xff0c;安全员-C证证模拟考试题库是根据安全员-C证最新版教材汇编出安全员-C证仿真模拟考试。2023年【安全员-C证】考试试卷及安全员-C证试题及解析 1、【多选…

带你用uniapp从零开发一个仿小米商场_4.uniapp中引入阿里图标库中字体图标

字体图标库介绍 CSS中的字体图标是一种使用字体文件来呈现图标的技巧。与传统的图像图标相比&#xff0c;字体图标具有更多的优点&#xff0c;例如易于定制、可扩展性和跨平台兼容性。在CSS中&#xff0c;字体图标通常通过使用字体文件和CSS的font-face规则来引入&#xff0c;…

【差旅游记】走进新疆哈密博物馆

哈喽&#xff0c;大家好&#xff0c;我是雷工&#xff01; 前些天在新疆哈密时&#xff0c;有天下午有点时间&#xff0c;看离住的宾馆不远就是哈密博物馆&#xff0c;便去逛了逛博物馆&#xff0c;由于接下来的一段时间没顾上记录&#xff0c;趁今天有些时间简单记录下那短暂的…

ElasticSearch01

ElasticSearch 版本&#xff1a;7.8 学习视频&#xff1a;尚硅谷 笔记&#xff1a;https://zgtsky.top/ ElasticSearch介绍 Elaticsearch&#xff0c;简称为es&#xff0c; es是一个开源的高扩展的分布式全文检索引擎&#xff0c;它可以近乎实时的存储、检索数据&#xff1b…