opencv-利用DeepLabV3+模型进行图像分割去除输入图像的背景

分离图像中的人物和背景通常需要一些先进的图像分割技术。GrabCut是一种常见的方法,但是对于更复杂的场景,可能需要使用深度学习模型。以下是使用深度学习模型(如人像分割模型)的示例代码:

#导入相关的库
import cv2
import numpy as np
import torch
import torchvision.transforms as T
from torchvision.models.segmentation import deeplabv3_resnet101def remove_background_with_deep_learning(image_path):# 读取图像image = cv2.imread(image_path)# 将图像转换为RGB格式image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) #将图像从BGR格式转换为RGB格式,因为深度学习模型通常使用RGB。# 定义图像预处理和转换transform = T.Compose([  #定义了图像的预处理和转换步骤,包括将图像转换为PyTorch张量和标准化。T.ToTensor(),  # 将图像转换为PyTorch张量T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),  # 标准化图像])# 对图像进行预处理和转换input_tensor = transform(image_rgb)input_batch = input_tensor.unsqueeze(0)  # 添加一个维度,使其成为批处理的一部分# 加载预训练的DeepLabV3模型model = deeplabv3_resnet101(pretrained=True)model.eval()  # 设置为评估模式,不进行梯度更新# 运行模型并获取分割掩模with torch.no_grad(): #上下文管理器,用于关闭梯度计算,以提高推断速度。output = model(input_batch)['out'][0]#运行模型并获取输出。output_predictions = output.argmax(0)  # 获取模型输出中预测类别的索引# 将分割结果转换为二进制掩模mask = (output_predictions == 15).numpy()  # 在DeepLabV3模型中,15是人物的标签# 将原始图像与二进制掩模相乘,去除背景result = image * mask[:, :, np.newaxis]# 显示结果cv2.imshow('Original Image', image)cv2.imshow('Removed Background', result)cv2.waitKey(0)cv2.destroyAllWindows()
# 使用示例
remove_background_with_deep_learning(r"C:\Users\mzd\Desktop\opencv\images.jpg")

在这里插入图片描述
代码解释:
理解代码可能需要一些基本的编程和机器学习知识,以下是逐步解释代码的主要部分:

  1. 导入库: 首先,导入了用于图像处理和深度学习的库,包括OpenCV(cv2)、PyTorch和TorchVision。

  2. 定义函数: remove_background_with_deep_learning 是一个用于去除图像背景的函数。它接受一个图像路径作为参数。

  3. 读取和转换图像: 使用OpenCV读取图像,然后将图像转换为RGB格式。机器学习模型通常使用RGB格式。

  4. 图像预处理和转换: 定义了一系列图像预处理和转换步骤,将图像转换为PyTorch张量并进行标准化。

  5. 加载预训练模型: 使用deeplabv3_resnet101 模型,它是一个预训练的深度学习模型,专门用于图像分割任务。

  6. 运行模型并获取分割掩模: 将预处理后的图像输入到模型中,获取模型输出中的分割掩模。在这里,15是代表人物的类别标签。

  7. 将分割结果转换为二进制掩模: 将模型输出的分割结果转换为二进制掩模,其中值为1的像素表示属于人物的区域。

  8. 去除背景: 将原始图像与二进制掩模相乘,实现去除背景效果。

在这个函数中,将原始图像与二进制掩模相乘的目的是将背景部分置零,从而实现去除背景的效果。这是基于掩模的思想,其中掩模是一个与原始图像大小相同的二维数组,其中元素的值为0或1,用于指示哪些像素应该保留(值为1)或去除(值为0)。
具体流程如下:

  1. mask = (output_predictions == 15).numpy():通过模型的输出,生成一个二进制掩模。在这里,假设标签15对应于人物。掩模中值为1的像素表示人物,值为0的像素表示背景。
  2. result = image * mask[:, :, np.newaxis]:通过将原始图像与二进制掩模相乘,实现了以下效果:
    • 当掩模中对应位置的值为1(人物部分),相乘结果保持原始图像的颜色值;
    • 当掩模中对应位置的值为0(背景部分),相乘结果将对应位置的像素值置零。 这样,通过像素级别的相乘操作,将背景部分的像素值置零,达到了去除背景的效果。最终,result就是去除背景后的图像。

这是一种简单而有效的背景去除方法,尤其在利用深度学习模型进行图像分割的场景中得到了广泛应用。

  1. 显示结果: 使用OpenCV的 imshow 函数显示原始图像和去除背景后的图像。

  2. 使用示例: 调用 remove_background_with_deep_learning 函数,传递图像路径,这里的路径是 'path/to/your/image.jpg'。这是整个程序的入口。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/221394.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MATLAB中corrcoef函数用法

目录 语法 说明 示例 矩阵的随机列 两个随机变量 矩阵的 P 值 相关性边界 NaN 值 corrcoef函数的功能是返回数据的相关系数。 语法 R corrcoef(A) R corrcoef(A,B) [R,P] corrcoef(___) [R,P,RL,RU] corrcoef(___) ___ corrcoef(___,Name,Value) 说明 R corrc…

校园导游程序及通信线路设计(结尾附着总源码)

校园导游程序及通信线路设计 摘  要 新生或来访客人刚到校园,对校园的环境不熟悉。就需要一个导游介绍景点,推荐到下一个景点的最佳路径等。随着科技的发展,社会的进步,人们对便捷的追求也越来越高。为了减少人力和时间。针对对…

BigDecimal的使用全面总结

BigDecimal BigDecimal可以表示任意大小,任意精度的有符号十进制数。所以不用怕精度问题,也不用怕大小问题,放心使用就行了。就是要注意的是,使用的时候有一些注意点。还有就是要注意避免创建的时候存在精度问题,尤其…

【数据结构与算法】JavaScript实现树结构(一)

文章目录 一、树结构简介1.1.简单了解树结构1.2.树结构的表示方式 二、二叉树2.1.二叉树简介2.2.特殊的二叉树2.3.二叉树的数据存储 三、二叉搜索树3.1.认识二叉搜索树3.2.二叉搜索树应用举例 一、树结构简介 1.1.简单了解树结构 什么是树? 真实的树:…

谈谈Redis的几种经典集群模式

目录 前言 主从复制 哨兵模式 分片集群 前言 Redis集群是一种通过将多个Redis节点连接在一起以实现高可用性、数据分片和负载均衡的技术。它允许Redis在不同节点上同时提供服务,提高整体性能和可靠性。在Redis中提供集群方案总共有三种:主从复制、…

如何处理枚举类型(下)

作者简介:大家好,我是smart哥,前中兴通讯、美团架构师,现某互联网公司CTO 联系qq:184480602,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬 上一篇我们通过编写MyB…

Android平台GB28181设备接入模块开发填坑指南

技术背景 为什么要开发Android平台GB28181设备接入模块?这个问题不再赘述,在做Android平台GB28181客户端的时候,媒体数据这块,我们已经有了很好的积累,因为在此之前,我们就开发了非常成熟的RTMP推送、轻量…

C++学习之路(六)C++ 实现简单的工具箱系统命令行应用 - 示例代码拆分讲解

简单的工具箱系统示例介绍: 这个示例展示了一个简单的工具箱框架,它涉及了几个关键概念和知识点: 面向对象编程 (OOP):使用了类和继承的概念。Tool 是一个纯虚类,CalculatorTool 和 FileReaderTool 是其派生类。 多态&#xff1…

基于springboot+Web实现社区医院管理服务系统项目【项目源码+论文说明】

基于springbootWeb实现社区医院管理服务系统演示 摘要 在Internet高速发展的今天,我们生活的各个领域都涉及到计算机的应用,其中包括社区医院管理服务系统的网络应用,在外国线上管理系统已经是很普遍的方式,不过国内的管理系统可…

dst-admin饥荒管理后台 RCE漏洞复现(CVE-2023-0646、CVE-2023-0647、CVE-2023-0649)

0x01 产品简介 dst-admin饥荒管理后台是qinming99个人开发者的一个用 Java 语言编写的 web 程序。 0x02 漏洞概述 dst-admin饥荒管理后台kickPlayer、cavesConsole、sendBroadcast等接口处配置不当,导致破解口令后的攻击者可以进行命令注入,获取服务器权…

Elastic Search的RestFul API入门:初识mapping

本节课旨在探讨Elasticsearch中Mapping的使用。在Elasticsearch中,Mapping是定义索引中字段(Field)的数据类型和属性的过程。它为Elasticsearch提供了一种途径,以解析和处理文档中的各个字段,以便在搜索、排序和聚合等…

【非监督学习 | 聚类】聚类算法类别大全 距离度量单位大全

🤵‍♂️ 个人主页: AI_magician 📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。 👨‍💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!&…