OpenGL 自学总结

前言:

        本人是工作后才接触到的OpenGL,大学找工作的时候其实比较着急,就想着尽快有个着落。工作后才发现自己的兴趣点。同时也能感觉到自己当前的工作有一点温水煮青蛙的意思,很担心自己往后能力跟不上年龄的增长。因此想在工作之余多学学自己感兴趣的东西,并记录下来。

        本文计划按照模型数据,渲染流水线,顶点着色器,光栅化,片元着色器,其他具体知识点的顺序来梳理自己这段时间自学的内容。

正文:

1、模型数据

        什么是模型数据,从本人目前学习的情况来理解,模型就是一组顶点数据的集合,注意,这里的顶点的数据不仅仅是顶点坐标,还包括纹理坐标,法线向量等等。其实每一项顶点数据都可以看作是广义的纹理,可能是二维的(如纹理坐标),也可能是三维的(如RGB颜色)。

        代码实验使用的是obj格式的模型文件,其格式可以参考本章下文连接,还是比较好理解的。本人目前只解析了obj文件中的“v”(模型顶点坐标)、“vt”(模型纹理坐标)、“vn”(模型顶点法线坐标)。输入是模型文件目录;输出按照OpenGL的格式,为一段float类型的数据流,逻辑上按行划分,每行为一组顶点数据(顶点坐标,法线数据,纹理坐标)。代码如code 1-1、code 1-2所示:

// objloader.h
#ifndef OBJLOADER_H
#define OBJLOADER_H
#include <QString>
#include "qdebug.h"
#include <iostream>
#include <fstream>
#include <QFile>struct Vnode {float x, y, z;
};
struct Vnormal {float x, y, z;
};
struct Vtexture {float x, y;
};
struct gldata {float vx, vy, vz;float vnx, vny, vnz;float vtx, vty;
};class objloader
{
public:bool ReadOBJFile(QString &fileName);bool GetOBJData(float** data, int* dataLen, int** iddata, int* idlen);QList<Vnode> Vlist;QList<Vnormal> Vnlist;QList<Vtexture> Vtlist;QList<gldata> glist;QList<int> idlist;
};

code 1-1

// objloader.cpp
#include "objloader.h"
#include "qdebug.h"
#include <iostream>
#include <fstream>
#include <QFile>bool objloader::ReadOBJFile(QString &fileName)
{QFile file(fileName);if(!file.open(QIODevice::ReadOnly|QIODevice::Text)){qDebug()<<"文件打开失败";}Vlist.clear();Vnlist.clear();Vtlist.clear();glist.clear();idlist.clear();int id = 0;while(!file.atEnd()) {QByteArray line = file.readLine();QString str(line);str = str.trimmed();if (str.length() < 2) {continue;}if (str[0] == 'v'){if (str[1] == 't'){ //纹理QStringList strlist = str.split(" ");Vtexture tmp;tmp.x = strlist[1].toFloat();tmp.y = strlist[2].toFloat();Vtlist.append(tmp);} else if (str[1] == 'n') { //法线QStringList strlist = str.split(" ");Vnormal tmp;tmp.x = strlist[1].toFloat();tmp.y = strlist[2].toFloat();tmp.z = strlist[3].toFloat();Vnlist.append(tmp);} else {QStringList strlist = str.split(" ");Vnode tmp;tmp.x = strlist[2].toFloat();tmp.y = strlist[3].toFloat();tmp.z = strlist[4].toFloat();Vlist.append(tmp);}} else if (str[0] == 'f') {QStringList strlist = str.split(" ");for (int i=1;i<strlist.size();i++) {QStringList info = strlist[i].split("/");if (info.size() < 3) {qDebug()<<"f decode fail";return false;}gldata node;if (info[0].toInt()-1 >= Vlist.size() ||info[2].toInt()-1 >= Vnlist.size() ||info[1].toInt()-1 >= Vtlist.size()) {qDebug()<<"f overflow";return false;}node.vx = Vlist.at(info[0].toInt()-1).x;node.vy = Vlist.at(info[0].toInt()-1).y;node.vz = Vlist.at(info[0].toInt()-1).z;node.vnx = Vnlist.at(info[2].toInt()-1).x;node.vny = Vnlist.at(info[2].toInt()-1).y;node.vnz = Vnlist.at(info[2].toInt()-1).z;node.vtx = Vtlist.at(info[1].toInt()-1).x;node.vty = Vtlist.at(info[1].toInt()-1).y;glist.append(node);}// push绘制点的下标 123和134,目的是确保绘制方向一致(顺时针)idlist.append(id);idlist.append(id+1);idlist.append(id+2);idlist.append(id);idlist.append(id+2);idlist.append(id+3);id = id + 4;} else if (str[0] == 'o') {qDebug()<<"o 解析失败";}}return true;
}
bool objloader::GetOBJData(float** data, int* dataLen, int** iddata, int* idlen)
{*dataLen = (sizeof(gldata)*(glist.size()));*data = (float*)malloc(*dataLen);*idlen = (sizeof(int)*(idlist.size()));*iddata = (int*)malloc(*idlen);for (int i=0;i<glist.size();i++) {if ((int)(i*sizeof(gldata)) >= *dataLen) {qDebug() << "GetOBJData out of mem";}memcpy((*data) + (i*(sizeof(gldata)/sizeof(float))), &glist.at(i), sizeof(gldata));}for (int i=0;i<idlist.size();i++) {memcpy((*iddata)+i, &idlist.at(i), sizeof(int));}return true;
}

code 1-2

        相关学习:

        3D文件格式之OBJ文件格式

2、渲染流水线

        模型数据加载进内存中后,计算机只有一堆点的数据,如何绘制出模型的“形”呢?这就需要利用OpenGL的渲染流水线了。一般来说,一个渲染流程会分为三个阶段:应用阶段、几何阶段、光栅化阶段。图2-1是这三个阶段的联系。应用阶段是开发者工作的阶段,开发者需准备好要渲染的各种几何信息(包括模型数据、渲染状态、着色器等),即渲染图元;几何阶段通常在GPU上进行,负责处理应用阶段输入的渲染图元,一般是逐点或者逐多边形地操作(例如对每个顶点做光照处理)。最终几何阶段会将模型的顶点数据变换到屏幕空间中,并交给光栅器处理;光栅化阶段会将几何阶段传递下来的数据进行采样,产生屏幕上的像素,渲染出最终的图像。这一阶段也是在GPU进行的。

图2-1

        整个渲染过程中,先是由CPU将数据加载进显存中,并设置渲染状态(例如使用哪些着色器),最后调用渲染命令。之后的工作都在GPU里进行。GPU内部的工作流程如图2-2所示,其中绿色表示该阶段可编程,黄色表示该阶段可配置不可编程,蓝色表示该节点开发者无法控制。实线表示该着色器必须由开发者编程实现,虚线表示该着色器是可选的。本文目前只涉及顶点着色器以及片元着色器。

图2-2

3、顶点着色器

        顶点着色器对输入的每一个模型顶点做同样的处理流程,具体处理流程将由开发者编程实现现,一般为一个用GLSL(OpenGL Shading Language)语言编写的txt文件。code 3-1是一段顶点着色器的代码,作用是将传入的模型坐标变换到摄像机的裁剪空间,并设置模型的颜色和纹理并输出给片元着色器。语法和c语言类似,下面介绍代码中的几个关键字:

        #version 330 core,指定GLSL的版本和配置。在这个例子中,表示使用OpenGL 3.3版本的核心配置。

        layout (location = i) ,这是GLSL接收外部变量的方式之一,其中vec3表示该变量的类型,即3维向量(x,y,z)。后面的aPos则是变量名。外部代码通过code 3-2的方式传入变量,本文用于加载章节1输出的模型数据(顶点坐标、法线坐标、纹理坐标的大数据流)。

        out,指定顶点着色器的输出变量,后面跟着变量类型、变量名。顶点着色器的输出将成为片元着色器的输入。

        uniform,这是GLSL接受外部变量的另一种方式。mat4表示变量类型,是一个4*4的矩阵,model为变量名。本例子用于传入3个变换矩阵(MVP矩阵),外部代码通过code 3-3的方式传入变量。

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 rPos;
layout (location = 2) in vec2 texCoord;
out vec3 normal;
out vec2 TexCoord;
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
void main()
{gl_Position = projection*view*model*vec4(aPos.x, aPos.y, aPos.z, 1.0f);normal= rPos;TexCoord = texCoord;
}

code 3-1

// 加载VAO
glGenVertexArrays(1, &VAO);
glBindVertexArray(VAO);
// 加载VBO,data是模型数据(顶点坐标、法线坐标、纹理坐标的大数据流)
glGenBuffers(1, &VBO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, datalen, data, GL_STATIC_DRAW);
// 加载EBO,iddata表示绘制模型各个三角形面时,每个三角形顶点坐标的索引,顶点坐标来源与上面的data
glGenBuffers(1, &EBO);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, idlen, iddata, GL_STATIC_DRAW);/* glVertexAttribPointer说明:* 每个顶点属性从一个VBO管理的内存中获得它的数据* 具体是从哪个VBO(程序中可以有多个VBO)获取则是通过在调用glVertexAttribPointer时绑定到GL_ARRAY_BUFFER的VBO决定的*/
// 绑定顶点
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0);
glEnableVertexAttribArray(0);// 绑定法线
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
glEnableVertexAttribArray(1);// 绑定纹理坐标
glVertexAttribPointer(2, 2, GL_FLOAT,GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
glEnableVertexAttribArray(2);/*
void glVertexAttribPointer(GLuint index, GLint size, GLenum type, GLboolean normalized, GLsizei stride, const GLvoid *pointer)
其中:
index:指定要修改的顶点属性的索引,与顶点着色器中的location对应。
size:指定数据的大小,例如顶点坐标是3维(3个数据),纹理是2维(2个数据)
type:指定每个组件的数据类型,可以是GL_BYTE、GL_UNSIGNED_BYTE、GL_SHORT、GL_UNSIGNED_SHORT、GL_INT、GL_UNSIGNED_INT、GL_FLOAT或GL_DOUBLE。
normalized:指定是否应该将非浮点值映射到范围[0,1](如果为GL_TRUE)或[-1,1](如果为GL_FALSE)。
stride:在模型数据流中,两个指定数据之间的步长,本文中每个模型顶点数据由(顶点坐标,法线坐标,纹理坐标)构成,所以每个子数据之间的步长为8个float。
pointer:指定指向第一个顶点属性的指针。如果缓冲区对象绑定到GL_ARRAY_BUFFER,则pointer被解释为首份数据的偏移量;否则,它被解释为指针。
*/
/*
glEnableVertexAttribArray用于激活指定索引的顶点属性数组,使其可以被顶点着色器使用。可以理解为指定一块内存存放中间数据。一般情况下,OpenGL确保至少有16个包含4分量的顶点属性可用。
*/

 code 3-2

/*
*void glUniformMatrix4fv (GLint location, GLsizei count, GLboolean transpose, const GLfloat * value)
*location : uniform的位置
*count : 矩阵个数,一般为1
*transpose : 矩阵是列优先矩阵(GL_FALSE)还是行优先矩阵(GL_TRUE)
*value : 指向由count个元素的数组的指针,一般为矩阵的首地址指针
*/
GLint modelLoc = glGetUniformLocation(shaderProgram, "model");
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, model.constData());
modelLoc = glGetUniformLocation(shaderProgram, "view");
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, view.constData());
modelLoc = glGetUniformLocation(shaderProgram, "projection");
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, projection.constData());

 code 3-3

        相关学习:

        顶点着色器与片元着色器 内置变量

4、光栅化

        这部分由OpenGL自身实现,开发者无法控制,但我认为也需要了解其中的过程。光栅化是将内存中的模型(由若干个顶点组成)投影到屏幕空间,并采样到一个一个像素上的过程。之前说过一个模型在内存中表示为若干个顶点,每三个顶点能够组成一个三角形面,称作一个“图元”。光栅化的操作目标就是模型面上的各个图元。每个图元有哪三个顶点组成是之前加载EBO时确定好的。

        为什么一个图元是三角形呢?原因有:1、三角形是最基础的多边形,所有的多边形都可以打碎成多个三角形的组合;2、光栅化还有一个很重要的一步——插值,即把顶点的一些属性(坐标、颜色、法线等)通过一定的策略附加到三角形内部的“像素”上,这个过程是线性。因此,只有三角形能够完成插值(4个点不一定在同一个平面,像法线、坐标这样的属性无法通过线性插值给到内部“像素”)。

5、片元着色器

        经过光栅化后,一个图元内部就有了若干“像素”(也可以叫片元),而片元着色器就是遍历这些“像素”做统一的处理。一般也是一个用GLSL语言编写的txt文件。code 5-1是一段片元着色器的代码,作用是输出当前片元的纹理值,法线暂时没用到(法线一般用于计算光照)。下面介绍下几个关键字:

        in,接收顶点着色器的输出,后面跟着分别是数据类型和数据名。

        out,片元着色器的输出,一般是颜色数据(RGBA)。

        uniform sampler2D ourTexture,这是GLSL供纹理对象使用的内建数据类型,叫做采样器(Sampler),它以纹理类型作为后缀,比如sampler2D、sampler3D。该变量能够获取到之前加载的的纹理数据,和输入的纹理坐标TexCoord结合使用就能够得出纹理值(颜色)。纹理的加载方式如code 5-2所示。

#version 330 core
in vec3 normal;
in vec2 TexCoord;
out vec4 Fcolor;uniform sampler2D ourTexture;void main()
{Fcolor = texture(ourTexture, TexCoord);
}

code 5-1

// 加载纹理
QImage img;
img.load("D:\\IDE\\QTProject\\opgl\\a.png");
// 改变编码格式,不然颜色对不上
img = img.convertToFormat(QImage::Format_RGB888);
int width = img.width();
int height = img.height();
glGenTextures(1, &texture);
glBindTexture(GL_TEXTURE_2D, texture);
// 为当前绑定的纹理对象设置环绕、过滤方式
// 加载并生成纹理
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, img.bits());
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glGenerateMipmap(GL_TEXTURE_2D);// 绘制时需要加上
glBindTexture(GL_TEXTURE_2D, texture);

code 5-2

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/221613.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

小型内衣洗衣机什么牌子好?口碑最好的小型洗衣机

很多人会觉得内衣洗衣机是智商税&#xff0c;洗个内衣只需要两分钟的事情&#xff0c;需要花个几百块钱去入手一个洗衣机吗&#xff1f;然而清洗贴身衣物的并不是一件简单的事情&#xff0c;如果只是简单的搓洗&#xff0c;内裤上看不见的细菌也无法消除&#xff0c;而且对来生…

【第二节:微信小程序 app.json配置】微信小程序入门,以思维导图的方式展开2

以思维导图的方式呈现出来&#xff0c;是不是会更加直观一些呢 如果看不清楚&#xff0c;私信给单发 &#xff1a; 第二节&#xff1a;微信小程序 app.json配置&#xff1a; 包括&#xff1a; window pages tabBar networkTimeout debug 如下图所示&#xff1a; 2、ap…

CISA建议企业需要多重身份验证

多重身份验证(MFA)让您的企业更加安全&#xff0c;免受在线威胁的侵害。 中小型多因素身份验证提供额外的安全性 贵公司的知识产权、员工个人信息、客户信息等是犯罪活动的主要目标。仅使用密码并不总是能有效地保护组织的数据。事实上&#xff0c;弱密码或被盗密码是在线犯罪分…

CRM的智能招投标对企业有什么意义?

如今CRM系统的生态系统越来越壮大&#xff0c;这些工具的集成极大地丰富了CRM系统的应用场景&#xff0c;例如CRM系统集成企业微信等社交媒体为获客提供便利&#xff1b;再比如CRM集成ChatGPT提高邮件内容质量&#xff0c;对于经常接触招投标项目的业务人员来说&#xff0c;在C…

Spring框架体系及Spring IOC思想

目录 Spring简介Spring体系结构SpringIOC控制反转思想自定义对象容器Spring实现IOCSpring容器类型容器接口容器实现类对象的创建方式使用构造方法使用工厂类的方法使用工厂类的静态方法对象的创建策略对象的销毁时机生命周期方法获取Bean对象的方式通过id/name获取通过类型获取…

UE4/UE5 c++绘制编辑器场景直方图(源码包含场景中的像素获取、菜单添加ToolBar)

UE4/UE5 c场景直方图 UE4/UE5 C绘制编辑器场景直方图绘制原理&#xff1a;元素绘制坐标轴绘制 源码处理 UE4/UE5 C绘制编辑器场景直方图 注&#xff1a;源码包含场景中的像素获取、菜单添加ToolBar 实现效果&#xff1a; 这个是用于美术统计场景中像素元素分布&#xff0c;类…

相机内存卡照片删除怎么恢复?没有备份可这样操作

在使用相机时&#xff0c;不小心删除了重要的照片可能是每位摄影爱好者的噩梦。然而&#xff0c;通过一些恢复方法&#xff0c;我们有机会挽救被删除的照片。本文将详细介绍相机内存卡照片删除恢复的方法。 图片来源于网络&#xff0c;如有侵权请告知 如果您误删了相机内存卡中…

企业营销管理能够实现自动化吗?怎么做?

当今企业面临着越来越多的营销难题&#xff1a;如何有效培育潜在客户、如何提高营销活动的效果、如何优化营销资源的分配......企业的营销管理怎么做&#xff1f;或许CRM系统营销自动化会起到作用。 客户细分&#xff1a; 企业可以通过CRM的客户细分功能&#xff0c;根据客户…

408—电子笔记分享

一、笔记下载 链接&#xff1a;https://pan.baidu.com/s/1bFz8IX6EkFMWTfY9ozvVpg?pwddeng 提取码&#xff1a;deng b站视频&#xff1a;408-计算机网络-笔记分享_哔哩哔哩_bilibili 包含了408四门科目&#xff08;数据结构、操作系统、计算机组成原理、计算机网络&#xff09…

MVCC多版本并发控制相关面试题整理

多版本并发控制是一种用于支持并发事务的数据库管理系统技术&#xff0c;它允许多个事务同时访问数据库&#xff0c;而不会相互干扰或导致数据不一致。MVCC通过在数据库中维护不同版本的数据来实现这一目标&#xff0c;从而允许每个事务看到一致的数据库快照。 并发导致的问题…

【漏洞复现】熊海cms 存在sql注入 附poc

漏洞描述 熊海CMS 是由熊海开发的一款可广泛应用于个人博客,个人网站,企业网站的一套网站综合管理系统。 其采用前后端整合设计思路,php,Apache,mysql,前端使用Bootstrap和少许jquery前端框架开发; 网站样式设计简洁大方,整体功能点并不多,但功能正好够用;拥有一个…

【虚拟机Ubuntu 18.04配置网络】

虚拟机Ubuntu 18.04配置网络 1.配置网络连接方式,查看自己网关 2.修改主机名 3.修改系统配置1.配置网络连接方式,查看自己网关 选择虚拟机镜像设置网络连接模式,可以选择桥接或者NAT连接(我这里选择是NAT连接) 确定自己网关&#xff0c;可以在虚拟机 -》 编辑 -》虚拟网络编…