【Spark入门】基础入门

【大家好,我是爱干饭的猿,本文重点介绍Spark的定义、发展、扩展阅读:Spark VS Hadoop、四大特点、框架模块、运行模式、架构角色。

后续会继续分享其他重要知识点总结,如果喜欢这篇文章,点个赞👍,关注一下吧】

上一篇文章:《【YOLOv5入门】目标检测》

1. Spark 框架概述

1.1 Spark 是什么

定义:Apache Spark是用于大规模数据(large-scala data)处理的统一(unified)分析引擎。

Spark 最早源于一篇论文 Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing,该论文是由加州大学柏克莱分校的 Matei Zaharia 等人发表的。论文中提出了一种弹性分布式数据集(即 RDD)的概念。

翻译过来就是:RDD 是一种分布式内存抽象,其使得程序员能够在大规模集群中做内存运算,并且有一定的容错方式。而这也是整个 Spark 的核心数据结构,Spark 整个平台都围绕着RDD进行。
在这里插入图片描述
简而言之,Spark 借鉴了 MapReduce 思想发展而来,保留了其分布式并行计算的优点并改进了其明显的缺陷。让中间数据存储在内存中提高了运行速度、并提供丰富的操作数据的API提高了开发速度。

为什么是统一分析引擎?

Spark是一款分布式内存计算的统一分析引擎。
其特点就是对任意类型的数据进行自定义计算。
Spark可以计算:结构化、半结构化、非结构化等各种类型的数据结构,同时也支持使用Python、Java、Scala、R以及SQL语言去开发应用
程序计算数据。
Spark的适用面非常广泛,所以,被称之为 统一的(适用面广)的分析引擎(数据处理)

1.2 Spark风雨十年

Spark 是加州大学伯克利分校AMP实验室(Algorithms Machines and People Lab)开发的通用大数据处理框架。
Spark的发展历史,经历过几大重要阶段,如下图所示:

在这里插入图片描述

1.3 扩展阅读:Spark VS Hadoop

Spark和前面学习的Hadoop技术栈有何区别呢?
在这里插入图片描述
尽管Spark相对于Hadoop而言具有较大优势,但Spark并不能完全替代Hadoop

  • 在计算层面,Spark相比较MR(MapReduce)有巨大的性能优势,但至今仍有许多计算工具基于MR构架,比如非常成熟的Hive
  • Spark仅做计算,而Hadoop生态圈不仅有计算(MR)也有存储(HDFS)和资源管理调度(YARN),HDFS和YARN仍是许多大数据体系的核心架构。

面试题:Hadoop的基于进程的计算和Spark基于线程方式优缺点?

答案:Hadoop中的MR中每个map/reduce task都是一个java进程方式运行,好处在于进程之间是互相独立的,每个task独享进程资源,没有互相干扰,监控方便,但是问题在于task之间不方便共享数据,执行效率比较低。比如多个map task读取不同数据源文件需要将数据源加
载到每个map task中,造成重复加载和浪费内存。而基于线程的方式计算是为了数据共享和提高执行效率,Spark采用了线程的最小的执行单位,但缺点是线程之间会有资源竞争。

1.4 Spark 四大特点

1. 速度快

由于Apache Spark支持内存计算,并且通过DAG(有向无环图)执行引擎支持无环数据流,所以官方宣称其在内存中的运算速度要比Hadoop的MapReduce快100倍,在硬盘中要快10倍。

Spark处理数据与MapReduce处理数据相比,有如下两个不同点:

  • 其一、Spark处理数据时,可以将中间处理结果数据存储到内存中;
  • 其二、Spark 提供了非常丰富的算子(API), 可以做到复杂任务在一个Spark 程序中完成.

2. 易于使用

Spark 的版本已经更新到 Spark 3.2.0(截止日期2021.10.13),支持了包括 Java、Scala、Python 、R和SQL语言在内的多种语言。为了兼容Spark2.x企业级应用场景,Spark仍然持续更新Spark2版本。

3. 通用性强

在 Spark 的基础上,Spark 还提供了包括Spark SQL、Spark Streaming、MLib 及GraphX在内的多个工具库,我们可以在一个应用中无缝地使用这些工具库。

在这里插入图片描述

4. 运行方式

Spark 支持多种运行方式,包括在 Hadoop 和 Mesos 上,也支持 Standalone的独立运行模式,同时也可以运行在云Kubernetes(Spark 2.3开始支持)上。

在这里插入图片描述
对于数据源而言,Spark 支持从HDFS、HBase、Cassandra 及 Kafka 等多种途径获取数据。

1.5 Spark 框架模块-了解

整个Spark 框架模块包含:Spark Core、 Spark SQL、 Spark Streaming、 Spark GraphX、 Spark MLlib,而后四项的能力都是建立在核心引擎之上
在这里插入图片描述

  • Spark Core:Spark的核心,Spark核心功能均由Spark Core模块提供,是Spark运行的基础。Spark Core以RDD为数据抽象,提供Python、Java、Scala、R语言的API,可以编程进行海量离线数据批处理计算。
  • SparkSQL:基于SparkCore之上,提供结构化数据的处理模块。SparkSQL支持以SQL语言对数据进行处理,SparkSQL本身针对离线计算场景。同时基于SparkSQL,Spark提供了StructuredStreaming模块,可以以SparkSQL为基础,进行数据的流式计算。
  • SparkStreaming:以SparkCore为基础,提供数据的流式计算功能。
  • MLlib:以SparkCore为基础,进行机器学习计算,内置了大量的机器学习库和API算法等。方便用户以分布式计算的模式进行机器学习计算。
  • GraphX:以SparkCore为基础,进行图计算,提供了大量的图计算API,方便用于以分布式计算模式进行图计算。

1.6 Spark 运行模式

Spark提供多种运行模式,包括:

  • 本地模式(单机)
    本地模式就是以一个独立的进程,通过其内部的多个线程来模拟整个Spark运行时环境
  • Standalone模式(集群)
    Spark中的各个角色以独立进程的形式存在,并组成Spark集群环境
  • Hadoop YARN模式(集群)
    Spark中的各个角色运行在YARN的容器内部,并组成Spark集群环境
  • Kubernetes模式(容器集群)
    Spark中的各个角色运行在Kubernetes的容器内部,并组成Spark集群环境
  • 云服务模式(运行在云平台上)

1.7 Spark 架构角色

1. YARN角色回顾

YARN主要有4类角色,从2个层面去看:

  • 资源管理层面
    • 集群资源管理者(Master):ResourceManager
    • 单机资源管理者(Worker):NodeManager
  • 任务计算层面
    • 单任务管理者(Master):ApplicationMaster
    • 单任务执行者(Worker):Task(容器内计算框
      架的工作角色)
      在这里插入图片描述

2. Spark运行角色

Spark中由4类角色组成整个Spark的运行时环境

  • Master角色,管理整个集群的资源 - 类比与YARN的ResouceManager
  • Worker角色,管理单个服务器的资源 - 类比于YARN的NodeManager
  • Driver角色,管理单个Spark任务在运行的时候的工作 - 类比于YARN的ApplicationMaster
  • Executor角色,单个任务运行的时候的一堆工作者,干活的 - 类比于YARN的容器内运行的TASK

从2个层面划分:

  • 资源管理层面:
    • 管理者: Spark是Master角色,YARN是ResourceManager
    • 工作中: Spark是Worker角色,YARN是NodeManager
  • 从任务执行层面:
    • 某任务管理者: Spark是Driver角色,YARN是ApplicationMaster
    • 某任务执行者: Spark是Executor角色,YARN是容器中运行的具体工作进程。
      在这里插入图片描述
      本篇文章内容摘自-黑马程序员

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/222847.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Java】IDEA 基本操作

0.IDEA 0.1 IDEA中的层级结构 0.1.1 结构分类 project(项目、工程)module(模块)package(包)class(类) 0.1.2 结构介绍 project(项目、工程) ​ 淘宝、京…

【代码】平抑风电波动的电-氢混合储能容量优化配置(完美复现)matlab-yalmip-cplex/gurobi

程序名称:平抑风电波动的电-氢混合储能容量优化配置 实现平台:matlab-yalmip-cplex/gurobi 代码简介:针对电-氢混合系统协同平抑接入新型电力系统的 新能源波动问题,提出考虑碱性电解槽运行特性的电-氢 混合储能容量优化配置方案…

Docker+Jmeter+InfluxDB+Grafana优化压测报告

1、安装docker 运行Docker&#xff0c;并记录当前Docker的IP地址&#xff0c;本处IP为192.168.99.100 2、安装并配置influxDB 下载镜像 网上获取&#xff1a;docker pull tutum/influxdb 本地安装&#xff1a;docker load < influxdb.tar 安装influxDB容器 docker run…

DCDC电路参数计算

一、周期计算 以电感为切入点&#xff0c;计算DCDC电路的导通/断开周期。 Fig 1为降压转换器基本电路。 一个周期T分为开关管导通周期D和开关管断开周期1-D。 开关管导通周期&#xff0c;二级管关断&#xff0c;电感两端的电压为&#xff1a; Ldio/dt(Vin-Vout) 电感电流增…

前端设计问题:iframe

居中问题&#xff1a; 尝试了一般的居中方法&#xff0c;无效果 display: flex;justify-content: center;align-items: center;放到导航栏下面不居中 放到页面底部还是不居中 Code <iframe id"demo_sanshui" src"demo_sanshui.html" width"120%…

探秘数字学习新兴:深度解析知识付费系统

在当今数字化时代&#xff0c;知识付费系统作为一种创新性的学习和知识分享模式正逐渐崭露头角。本文将深入探讨知识付费系统的概念、重要性&#xff0c;并提供一个简单而完整的示例&#xff0c;展示其核心技术和实现方式。 概念与重要性 知识付费系统是一种基于互联网平台的…

北京 | 竹云与南方电网携手荣获“IDC 2023未来企业奖未来连接领导者”

11月22日-23日&#xff0c;2023第八届IDC中国数字化转型年度盛典在北京召开。本次大会以“竞放数字力量”为主题&#xff0c;汇聚超过1000位来自不同行业的大咖与伙伴共同参与此次盛会&#xff0c;从全球化视角出发&#xff0c;围绕本土化落地人工智能&#xff08;大模型&#…

2020年09月 Scratch(四级)真题解析#中国电子学会#全国青少年软件编程等级考试

Scratch等级考试(1~4级)全部真题・点这里 一、单选题(共15题,每题2分,共30分) 第1题 执行下面程序,输入4和7后,角色说出的内容是? A:4,7 B:7,7 C:7,4 D:4,4 答案:B 第2题 执行下面程序,输出是? A:大学 中庸 孟子 论语 B:论语 大学 孟子 中庸 C:大…

菜单的hover不同动画背景

CSS常用示例100专栏目录 本专栏记录的是经常使用的CSS示例与技巧&#xff0c;主要包含CSS布局&#xff0c;CSS特效&#xff0c;CSS花边信息三部分内容。其中CSS布局主要是列出一些常用的CSS布局信息点&#xff0c;CSS特效主要是一些动画示例&#xff0c;CSS花边是描述了一些CSS…

【C++干货铺】非类型模板 | 模板特化 | 模板分离编译

个人主页点击直达&#xff1a;小白不是程序媛 C系列专栏&#xff1a;C干货铺 代码仓库&#xff1a;Gitee 目录 非类型模板参数 模板的特化 什么是模板特化&#xff1f; 函数模板特化 类模板的特化 全特化 偏特化 模板的分离编译 什么是分离编译&#xff1f; 模板的…

qInstallMessageHandler的学习

背景&#xff1a;需要做一个日志系统。 把信息重定向到txt文件中。 参考&#xff1a; QT 调试信息如何输出到文件&#xff08;qDebug/qWarning/qCritical/qFatal&#xff09;-CSDN博客 Qt 之 qInstallMessageHandler&#xff08;重定向至文件&#xff09;-CSDN博客 demo…

考试周刊杂志考试周刊杂志社考试周刊编辑部2023年第46期目录

教育教学研究 丰富作业形式 拓展课堂教学——“双减”下初中英语优化作业设计探析 王慧; 1-5 博学慎思明辨 撬动思维杠杆——论“思辨性阅读与表达”学习任务群范式构建 丁亚琴; 6-10《考试周刊》投稿邮箱&#xff1a;cn7kantougao163.com(注明投稿“《考试周刊》”) 崔…