Python实现WOA智能鲸鱼优化算法优化LightGBM回归模型(LGBMRegressor算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

鲸鱼优化算法 (whale optimization algorithm,WOA)是 2016 年由澳大利亚格里菲斯大学的Mirjalili 等提出的一种新的群体智能优化算法,其优点在于操作简单,调整的参数少以及跳出局部最优的能力强。

本项目通过WOA智能鲸鱼优化算法寻找最优的参数值来优化LightGBM回归模型。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

7

x7

8

x8

9

x9

10

x10

11

y

因变量

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

   

从上图可以看到,总共有11个变量,数据中无缺失值,共1000条数据。

关键代码:  

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:    

4.探索性数据分析

4.1 y变量直方图

用Matplotlib工具的hist()方法绘制直方图:

从上图可以看到,y变量主要集中在-400~400之间。

4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

6.构建WOA智能鲸鱼优化算法优化LightGBM回归模型

主要使用WOA智能鲸鱼优化算法优化LightGBM回归算法,用于目标回归。

6.1 WOA智能鲸鱼优化算法寻找的最优参数   

最优参数:

   

6.2 最优参数值构建模型

编号

模型名称

参数

1

LightGBM回归模型

n_estimators=best_n_estimators

2

learning_rate=best_learning_rate

7.模型评估

7.1 评估指标及结果

评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。

模型名称

指标名称

指标值

测试集

LightGBM回归模型

  R方

0.8742

均方误差

5173.8696

可解释方差值

0.8743

平均绝对误差

56.0685

从上表可以看出,R方0.8742,为模型效果较好。

关键代码如下:

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。    

8.结论与展望

综上所述,本文采用了WOA智能鲸鱼优化算法寻找LightGBM回归算法的最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

# 本次机器学习项目实战所需的资料,项目资源如下:# 项目说明:链接:https://pan.baidu.com/s/19ZVfo4Tf2kQ9Xv4cvxnguQ 
提取码:ggfp

更多项目实战,详见机器学习项目实战合集列表:

机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/223447.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI4S Cup学习赛-中枢神经系统药物研发:药物筛选与优化

赛题介绍 链接:Bohrium 案例广场 (dp.tech) 中枢神经系统类疾病长期以来存在着重要的临床未满足需求。据统计,在当前人口老龄化趋势下,阿兹海默(AD)、帕金森病(PD)等神经退行性疾病和脑癌、中…

Go——三、运算符以及流程控制

Go 一、Go语言运算符1、算数运算符2、关系运算符3、逻辑运算符4、位运算符5、赋值运算符6、其他运算符7、运算符优先级 二、Go的流程控制1、if else2、for 循环结构3、for range(键值循环)4、switch case5、break:跳出循环6、go:跳…

AI视觉识别有哪些工业应用

AI视觉识别,主要是利用人工智能算法对图像或视频数据进行分析和处理,以提取关键信息并执行筛选、判断、预警等任务。AI视觉识别涵盖多种应用,如人脸识别、目标检测和识别、图像分割、行为识别、视频分析等。本篇就简单介绍一下AI视觉识别的应…

C语言:求Sn=a+aa+aaa+aaaa+……(n个a)之值,其中a表示一个数字,n表示a的位数,n由键盘录入。

分析: 在主函数 main 中,程序首先定义四个整型变量 a、n、i 和 sn,并初始化 a、n 和 i 的值,其中 sn 用于记录数列的和。然后使用 scanf 函数从标准输入中读取用户输入的两个整数 a 和 n。 接下来,程序通过 while …

共享模型之不可变

前言 该文章后续还需要进行修改!! 不可变的解释是对象属性不可以更改。 在多线程下,格式转化使用SimpleDateFormat可能会报错。这是因为线程之间互相影响导致。 public class test {public static void main(String[] args) {SimpleDateFo…

【JavaEE】多线程 (2) --线程安全

目录 1. 观察线程不安全 2. 线程安全的概念 3. 线程不安全的原因 4. 解决之前的线程不安全问题 5. synchronized 关键字 - 监视器锁 monitor lock 5.1 synchronized 的特性 5.2 synchronized 使⽤⽰例 1. 观察线程不安全 package thread; public class ThreadDemo19 {p…

Windows安装mysql8.0

官网地址:MySQL :: MySQL Community Downloads 选择相应版本信息下载 默认选择点击下一步 默认配置点击next 设置密码 默认配置

每天一道算法题:51. N 皇后

难度 困难 题目 按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。 n 皇后问题 研究的是如何将 n 个皇后放置在 nn 的棋盘上,并且使皇后彼此之间不能相互攻击。 给你一个整数 n ,返回所有不同的 n_ _皇后问题 的…

关于水杯水

主要难点1.碰撞 (水杯移动太快碰撞出问题 2.吃水 (参数碰撞问题水随着时间变少 一.首先发射源:不易过小或者过大 过小>>>>水解算空间大水动态剧烈稳定慢 过大>>>>穿插漏水(不用担心一般model环节会给&am…

Ubuntu安装Vmtools (最新安装教程)

Ubuntu安装Vmtools 1. 设置root用户密码2. 切换root用户3. 安装vmools 1. 设置root用户密码 出现认证失败(Authentication failure)的原因有两种,要么是密码输入错误,要么是新安装的系统还没有给root设置密码,&#x…

Python---可变和非可变数据类型

在Python中一共有7种数据类型: 数值(int整型、float浮点类型)、bool类型(True和False)、字符串类型(str)、元组(tuple 1,2,3)、列表(list [1, 2, 3]&#xf…

i社为什么不出游戏了?

I社,即国际知名的游戏公司,近来为何鲜有新游问世?曾经风靡一时的游戏开发者,如今为何陷入了沉寂?这其中的种种原因,值得我们深入剖析。 首先,I社近期的沉寂可能与其内部管理层的调整和战略规划…