python基于YOLOv7系列模型【yolov7-tiny/yolov7/yolov7x】开发构建钢铁产业产品智能自动化检测识别系统

在前文的项目开发实践中,我们已经以钢铁产业产品缺陷检测数据场景为基准,陆续开发构建了多款目标检测模型,感兴趣的话可以自行阅读即可。

《YOLOv3老矣尚能战否?基于YOLOv3开发构建建钢铁产业产品智能自动化检测识别系统,我们来与YOLOv5进行全方位对比评测》

《基于官方YOLOv4开发构建目标检测模型超详细实战教程【以自建缺陷检测数据集为例】》 

《基于官方YOLOv4-u5【yolov5风格实现】开发构建目标检测模型超详细实战教程【以自建缺陷检测数据集为例】》 

《I助力钢铁产业数字化,python基于YOLOv5开发构建钢铁产业产品智能自动化检测识别系统》

《python基于YOLOv6最新0.4.1分支开发构建钢铁产业产品智能自动化检测识别系统》

《python基于DETR(DEtection TRansformer)开发构建钢铁产业产品智能自动化检测识别系统》 

本文的主要目的就是延续这一业务场景的模型开发,基于yolov7来开发构建不同参数量级的钢铁产品智能化质检系统,首先来看实例效果:

本文主要选择了yolov7-tiny、yolov7和yolov7x三款不同参数量级的模型来开发我们所需要的目标检测系统。

简单看下数据集,如下所示:

共包含十种不同类型的产品缺陷。

训练数据配置文件如下所示:

# txt path 
train: ./dataset/images/train
val: ./dataset/images/test
test: ./dataset/images/test# number of classes
nc: 10# class names
names: ['chongkong', 'hanfeng', 'yueyawan', 'shuiban', 'youban', 'siban', 'yiwu', 'yahen', 'zhehen', 'yaozhe']

yolov7-tiny.yaml如下所示:

# parameters
nc: 10  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple# anchors
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# yolov7-tiny backbone
backbone:# [from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True[[-1, 1, Conv, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 0-P1/2  [-1, 1, Conv, [64, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 1-P2/4    [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 7[-1, 1, MP, []],  # 8-P3/8[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 14[-1, 1, MP, []],  # 15-P4/16[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 21[-1, 1, MP, []],  # 22-P5/32[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 28]# yolov7-tiny head
head:[[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, SP, [5]],[-2, 1, SP, [9]],[-3, 1, SP, [13]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -7], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 37[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[21, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P4[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 47[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[14, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P3[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 57[-1, 1, Conv, [128, 3, 2, None, 1, nn.LeakyReLU(0.1)]],[[-1, 47], 1, Concat, [1]],[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 65[-1, 1, Conv, [256, 3, 2, None, 1, nn.LeakyReLU(0.1)]],[[-1, 37], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 73[57, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[65, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[73, 1, Conv, [512, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[74,75,76], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)]

yolov7.yaml如下所示:

# parameters
nc: 10  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple# anchors
anchors:- [12,16, 19,36, 40,28]  # P3/8- [36,75, 76,55, 72,146]  # P4/16- [142,110, 192,243, 459,401]  # P5/32# yolov7 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [32, 3, 1]],  # 0[-1, 1, Conv, [64, 3, 2]],  # 1-P1/2      [-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [128, 3, 2]],  # 3-P2/4  [-1, 1, Conv, [64, 1, 1]],[-2, 1, Conv, [64, 1, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[[-1, -3, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]],  # 11[-1, 1, MP, []],[-1, 1, Conv, [128, 1, 1]],[-3, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [128, 3, 2]],[[-1, -3], 1, Concat, [1]],  # 16-P3/8  [-1, 1, Conv, [128, 1, 1]],[-2, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[[-1, -3, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1]],  # 24[-1, 1, MP, []],[-1, 1, Conv, [256, 1, 1]],[-3, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 2]],[[-1, -3], 1, Concat, [1]],  # 29-P4/16  [-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -3, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [1024, 1, 1]],  # 37[-1, 1, MP, []],[-1, 1, Conv, [512, 1, 1]],[-3, 1, Conv, [512, 1, 1]],[-1, 1, Conv, [512, 3, 2]],[[-1, -3], 1, Concat, [1]],  # 42-P5/32  [-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -3, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [1024, 1, 1]],  # 50]# yolov7 head
head:[[-1, 1, SPPCSPC, [512]], # 51[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[37, 1, Conv, [256, 1, 1]], # route backbone P4[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]], # 63[-1, 1, Conv, [128, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[24, 1, Conv, [128, 1, 1]], # route backbone P3[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1]],[-2, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1]], # 75[-1, 1, MP, []],[-1, 1, Conv, [128, 1, 1]],[-3, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [128, 3, 2]],[[-1, -3, 63], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]], # 88[-1, 1, MP, []],[-1, 1, Conv, [256, 1, 1]],[-3, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 2]],[[-1, -3, 51], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1]],[-2, 1, Conv, [512, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1]], # 101[75, 1, RepConv, [256, 3, 1]],[88, 1, RepConv, [512, 3, 1]],[101, 1, RepConv, [1024, 3, 1]],[[102,103,104], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)]

yolov7x.yaml如下所示:

# parameters
nc: 10  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple# anchors
anchors:- [12,16, 19,36, 40,28]  # P3/8- [36,75, 76,55, 72,146]  # P4/16- [142,110, 192,243, 459,401]  # P5/32# yolov7 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [40, 3, 1]],  # 0[-1, 1, Conv, [80, 3, 2]],  # 1-P1/2      [-1, 1, Conv, [80, 3, 1]],[-1, 1, Conv, [160, 3, 2]],  # 3-P2/4  [-1, 1, Conv, [64, 1, 1]],[-2, 1, Conv, [64, 1, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[[-1, -3, -5, -7, -8], 1, Concat, [1]],[-1, 1, Conv, [320, 1, 1]],  # 13[-1, 1, MP, []],[-1, 1, Conv, [160, 1, 1]],[-3, 1, Conv, [160, 1, 1]],[-1, 1, Conv, [160, 3, 2]],[[-1, -3], 1, Concat, [1]],  # 18-P3/8  [-1, 1, Conv, [128, 1, 1]],[-2, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[[-1, -3, -5, -7, -8], 1, Concat, [1]],[-1, 1, Conv, [640, 1, 1]],  # 28[-1, 1, MP, []],[-1, 1, Conv, [320, 1, 1]],[-3, 1, Conv, [320, 1, 1]],[-1, 1, Conv, [320, 3, 2]],[[-1, -3], 1, Concat, [1]],  # 33-P4/16  [-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -3, -5, -7, -8], 1, Concat, [1]],[-1, 1, Conv, [1280, 1, 1]],  # 43[-1, 1, MP, []],[-1, 1, Conv, [640, 1, 1]],[-3, 1, Conv, [640, 1, 1]],[-1, 1, Conv, [640, 3, 2]],[[-1, -3], 1, Concat, [1]],  # 48-P5/32  [-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -3, -5, -7, -8], 1, Concat, [1]],[-1, 1, Conv, [1280, 1, 1]],  # 58]# yolov7 head
head:[[-1, 1, SPPCSPC, [640]], # 59[-1, 1, Conv, [320, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[43, 1, Conv, [320, 1, 1]], # route backbone P4[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -3, -5, -7, -8], 1, Concat, [1]],[-1, 1, Conv, [320, 1, 1]], # 73[-1, 1, Conv, [160, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[28, 1, Conv, [160, 1, 1]], # route backbone P3[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1]],[-2, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[[-1, -3, -5, -7, -8], 1, Concat, [1]],[-1, 1, Conv, [160, 1, 1]], # 87[-1, 1, MP, []],[-1, 1, Conv, [160, 1, 1]],[-3, 1, Conv, [160, 1, 1]],[-1, 1, Conv, [160, 3, 2]],[[-1, -3, 73], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -3, -5, -7, -8], 1, Concat, [1]],[-1, 1, Conv, [320, 1, 1]], # 102[-1, 1, MP, []],[-1, 1, Conv, [320, 1, 1]],[-3, 1, Conv, [320, 1, 1]],[-1, 1, Conv, [320, 3, 2]],[[-1, -3, 59], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1]],[-2, 1, Conv, [512, 1, 1]],[-1, 1, Conv, [512, 3, 1]],[-1, 1, Conv, [512, 3, 1]],[-1, 1, Conv, [512, 3, 1]],[-1, 1, Conv, [512, 3, 1]],[-1, 1, Conv, [512, 3, 1]],[-1, 1, Conv, [512, 3, 1]],[[-1, -3, -5, -7, -8], 1, Concat, [1]],[-1, 1, Conv, [640, 1, 1]], # 117[87, 1, Conv, [320, 3, 1]],[102, 1, Conv, [640, 3, 1]],[117, 1, Conv, [1280, 3, 1]],[[118,119,120], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)]

默认完全相同的训练参数开始模型的训练。

训练完成后,我们来对三款模型进行对比评估可视化,如下所示:
【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

直观来看,三款模型没有特别大的差异,yolov7整体性能接近于yolov7x,在实际使用的时候可以优先考虑。如果算力首先可以直接使用tiny版本的模型也是可以的。

可视化推理实例如下所示:
 

能够同时满足图像推理计算和视频推理计算。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/225925.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python语言学习笔记之五(Python代码注解)

本课程对于有其它语言基础的开发人员可以参考和学习,同时也是记录下来,为个人学习使用,文档中有此不当之处,请谅解。 注解与注释是不一样的,注解有更广泛的应用; 通过注解与注释都能提高代码的可读性和规…

python学习过程中一些问题记录总结

工作机器上安装了 两个环境 使用anaconda3 时配置仓库地址不能 拉取到 cv2 DBUtils 使用python2 时 版本低,拉取不到 解决办法,python2不支持下载最新版本的,需要指定下载一个老的版本即可,下个1.3的就OK了 pip install DBU…

华为电视盒子 EC6108V9C 刷机成linux系统

场景: 提示:这里简述项目相关背景: 家里装宽带的时候会自带电视盒子,但是由于某些原因电视盒子没有用,于是就只能摆在那里吃土,闲来无事,搞一下 问题描述 提示:这里描述项目中遇到…

【嵌入式】开源shell命令行的移植和使用(2)——letter-shell

目录 一 背景说明 二 移植准备 三 移植过程 四 自定义命令 五 实际使用 一 背景说明 之前使用过一款开源shell工具 nr_micro_shell (【嵌入式】开源shell命令行的移植和使用(1)——nr_micro_shell-CSDN博客),感觉…

Linux fork笔试练习题

1.打印结果&#xff1f; #include <stdio.h> #include <unistd.h> #include <stdlib.h>int main() {int i0;for(;i<2;i){fork();printf("A\n");}exit(0); } 结果打印 A A A A A A 2.将上面的打印的\n去掉,结果如何? printf("…

统计学中两组数据如何进行差异性(相关性)分析?

变量说明&#xff1a; 在确定分析方法前&#xff0c;我们需要了解手中的数据类型&#xff0c;这是最基础也是有必要的&#xff0c;在所有的数据类型中&#xff0c;我们将数据类型分为分类变量也为定类变量和连续变量也称为定量变量&#xff0c;那么什么是定类变量&#xff1f;…

文章解读与仿真程序复现思路——电力系统保护与控制EI\CSCD\北大核心《基于深度强化学习的城市配电网多级动态重构优化运行方法》

这个标题涉及到城市配电网&#xff08;Urban Power Distribution Network&#xff09;的优化运行方法&#xff0c;其中使用了深度强化学习&#xff08;Deep Reinforcement Learning&#xff09;技术&#xff0c;并且特别强调了多级动态重构。 解读每个关键部分&#xff1a; 基…

Selenium 学习(0.14)——软件测试之测试用例设计方法——因果图法2【基本步骤及案例】

1、因果图法的基本步骤 2、案例分析 1&#xff09;分析原因和结果 2&#xff09;关联原因和结果 投入1元5角或2元&#xff0c;按下“可乐”&#xff0c;送出“可乐”【暂时忽略找零】 投入2元&#xff0c;按下“可乐”或“雪碧”。找零5角&#xff0c;送出“可乐”或“雪…

人工智能_AI服务器安装清华开源_CHATGLM大语言模型_GLM-6B安装部署_人工智能工作笔记0092

看到的这个开源的大模型,很牛,~关键让我们自己也可以部署体验一把了,虽然不知道具体内部怎么构造的但是,也可以自己使用也挺好. 可以部署在自己的机器上也可以部署在云服务器上. 安装以后,是可以使用python代码进行提问,然后返回结果的,这样就可以实现我们自己的chat应用了, …

【多线程】-- 05 Lambda表达式

多线程 4 Lambda表达式 λ是希腊字母表中排序第十一位的字母&#xff0c;英语名称为Lambda是为了避免匿名内部类定义过多实质属于函数式编程的概念 为什么要使用Lambda表达式&#xff1f; 避免匿名内部类定义过多可以让代码看起来很简洁去掉了一堆没有意义的代码&#xff0…

GOAT:多模态、终身学习、平台无关的机器人通用导航系统

机器人应用中涉及到的核心技术包括&#xff1a;环境感知与理解、实时定位与建图、路径规划、行为控制等。GOAT通过多模态结合终生学习的方式让你的机器人可以在未知环境中搜索和导航到任何物体。小白也可以零门槛上手。 项目地址&#xff1a;https://theophilegervet.github.i…

centos服务器扩容

centos服务器扩容 我的情况是&#xff0c;原服务器是一个80g磁盘&#xff0c;管理员又追加了120G到这块磁盘上&#xff0c;需要把这120G重新追加使用。 请确认你遇到的情况是否和我初始截图一致&#xff0c;再往下看&#xff0c;免得浪费时间与精力 服务器中有120G尚未使用&…