带残差连接的ResNet18

目录

1 模型构建

        1.1 残差单元

        1.2 残差网络的整体结构

        2 没有残差连接的ResNet18

        2.1 模型训练

        2.2 模型评价

3 带残差连接的ResNet18

        3.1 模型训练

         3.2 模型评价

4 与高层API实现版本的对比实验

        总结


残差网络(Residual Network,ResNet)是在神经网络模型中给非线性层增加直连边的方式来缓解梯度消失问题,从而使训练深度神经网络变得更加容易。

在残差网络中,最基本的单位为残差单元

假设$f(\mathbf x;\theta)$为一个或多个神经层,残差单元在$f()$的输入和输出之间加上一个直连边

不同于传统网络结构中让网络$f(x;\theta)$去逼近一个目标函数$h(x)$,在残差网络中,将目标函数$h(x)$拆为了两个部分:恒等函数$x$和残差函数$h(x)-x$


\mathrm{ResBlock}_f(\mathbf x) = f(\mathbf x;\theta) + \mathbf x

其中$\theta$为可学习的参数。

一个典型的残差单元如图所示,由多个级联的卷积层和一个跨层的直连边组成。

残差单元结构

 一个残差网络通常有很多个残差单元堆叠而成。下面我们来构建一个在计算机视觉中非常典型的残差网络:ResNet18,并重复上一节中的手写体数字识别任务。

1 模型构建

在本节中,我们先构建ResNet18的残差单元,然后在组建完整的网络。

        1.1 残差单元

这里,我们实现一个算子ResBlock来构建残差单元,其中定义了use_residual参数,用于在后续实验中控制是否使用残差连接。

残差单元包裹的非线性层的输入和输出形状大小应该一致。如果一个卷积层的输入特征图和输出特征图的通道数不一致,则其输出与输入特征图无法直接相加。为了解决上述问题,我们可以使用$1 \times 1$大小的卷积将输入特征图的通道数映射为与级联卷积输出特征图的一致通道数。

$1 \times 1$卷积:与标准卷积完全一样,唯一的特殊点在于卷积核的尺寸是$1 \times 1$,也就是不去考虑输入数据局部信息之间的关系,而把关注点放在不同通道间。通过使用$1 \times 1$卷积,可以起到如下作用:

  •  实现信息的跨通道交互与整合。考虑到卷积运算的输入输出都是3个维度(宽、高、多通道),所以$1 \times 1$卷积实际上就是对每个像素点,在不同的通道上进行线性组合,从而整合不同通道的信息;
  •  对卷积核通道数进行降维和升维,减少参数量。经过$1 \times 1$卷积后的输出保留了输入数据的原有平面结构,通过调控通道数,从而完成升维或降维的作用;
  •  利用$1 \times 1$卷积后的非线性激活函数,在保持特征图尺寸不变的前提下,大幅增加非线性。
class ResBlock(nn.Module):def __init__(self, in_channels, out_channels, stride=1, use_residual=True):super(ResBlock, self).__init__()self.stride = strideself.use_residual = use_residual# 第一个卷积层,卷积核大小为3×3,可以设置不同输出通道数以及步长self.conv1 = nn.Conv2d(in_channels, out_channels, 3, padding=1, stride=self.stride)# 第二个卷积层,卷积核大小为3×3,不改变输入特征图的形状,步长为1self.conv2 = nn.Conv2d(out_channels, out_channels, 3, padding=1)# 如果conv2的输出和此残差块的输入数据形状不一致,则use_1x1conv = True# 当use_1x1conv = True,添加1个1x1的卷积作用在输入数据上,使其形状变成跟conv2一致if in_channels != out_channels or stride != 1:self.use_1x1conv = Trueelse:self.use_1x1conv = False# 当残差单元包裹的非线性层输入和输出通道数不一致时,需要用1×1卷积调整通道数后再进行相加运算if self.use_1x1conv:self.shortcut = nn.Conv2d(in_channels, out_channels, 1, stride=self.stride)# 每个卷积层后会接一个批量规范化层,批量规范化的内容在7.5.1中会进行详细介绍self.bn1 = nn.BatchNorm2d(out_channels)self.bn2 = nn.BatchNorm2d(out_channels)if self.use_1x1conv:self.bn3 = nn.BatchNorm2d(out_channels)def forward(self, inputs):y = F.relu(self.bn1(self.conv1(inputs)))y = self.bn2(self.conv2(y))if self.use_residual:if self.use_1x1conv:  # 如果为真,对inputs进行1×1卷积,将形状调整成跟conv2的输出y一致shortcut = self.shortcut(inputs)shortcut = self.bn3(shortcut)else:  # 否则直接将inputs和conv2的输出y相加shortcut = inputsy = torch.add(shortcut, y)out = F.relu(y)return out

        1.2 残差网络的整体结构

        残差网络就是将很多个残差单元串联起来构成的一个非常深的网络。ResNet18 的网络结构如图所示。

其中为了便于理解,可以将ResNet18网络划分为6个模块:

  •  第一模块:包含了一个步长为2,大小为$7 \times 7$的卷积层,卷积层的输出通道数为64,卷积层的输出经过批量归一化、ReLU激活函数的处理后,接了一个步长为2的$3 \times 3$的最大汇聚层;
  •  第二模块:包含了两个残差单元,经过运算后,输出通道数为64,特征图的尺寸保持不变;
  •  第三模块:包含了两个残差单元,经过运算后,输出通道数为128,特征图的尺寸缩小一半;
  •  第四模块:包含了两个残差单元,经过运算后,输出通道数为256,特征图的尺寸缩小一半;
  •  第五模块:包含了两个残差单元,经过运算后,输出通道数为512,特征图的尺寸缩小一半;
  •  第六模块:包含了一个全局平均汇聚层,将特征图变为$1 \times 1$的大小,最终经过全连接层计算出最后的输出。

ResNet18模型的代码实现如下:

         定义模块一

def make_first_module(in_channels):m1 = nn.Sequential(nn.Conv2d(in_channels, 64, 7, stride=2, padding=3), nn.BatchNorm2d(64), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))return m1

        定义模块二到模块五

def resnet_module(input_channels, out_channels, num_res_blocks, stride=1, use_residual=True):blk = []for i in range(num_res_blocks):if i == 0:blk.append(ResBlock(input_channels, out_channels, stride=stride, use_residual=use_residual))else:blk.append(ResBlock(out_channels, out_channels, use_residual=use_residual))return blk

        封装模块二到模块五

def make_modules(use_residual):# 模块二:包含两个残差单元,输入通道数为64,输出通道数为64,步长为1,特征图大小保持不变m2 = nn.Sequential(*resnet_module(64, 64, 2, stride=1, use_residual=use_residual))# 模块三:包含两个残差单元,输入通道数为64,输出通道数为128,步长为2,特征图大小缩小一半。m3 = nn.Sequential(*resnet_module(64, 128, 2, stride=2, use_residual=use_residual))# 模块四:包含两个残差单元,输入通道数为128,输出通道数为256,步长为2,特征图大小缩小一半。m4 = nn.Sequential(*resnet_module(128, 256, 2, stride=2, use_residual=use_residual))# 模块五:包含两个残差单元,输入通道数为256,输出通道数为512,步长为2,特征图大小缩小一半。m5 = nn.Sequential(*resnet_module(256, 512, 2, stride=2, use_residual=use_residual))return m2, m3, m4, m5

        定义完整网络

class Model_ResNet18(nn.Module):def __init__(self, in_channels=3, num_classes=10, use_residual=True):super(Model_ResNet18, self).__init__()m1 = make_first_module(in_channels)m2, m3, m4, m5 = make_modules(use_residual)self.net = nn.Sequential(m1, m2, m3, m4, m5, nn.AdaptiveAvgPool2d(1), nn.Flatten(), nn.Linear(512, num_classes))def forward(self, x):return self.net(x)

        这里同样可以使用torchsummary.summary统计模型的参数量。

from torchsummary import summarydevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")  # PyTorch v0.4.0
model = Model_ResNet18(in_channels=1, num_classes=10, use_residual=True).to(device)
summary(model, (1, 32, 32))

         实验结果:

        使用thop.profile统计模型的计算量

from thop import profiledevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")  # PyTorch v0.4.0
model = Model_ResNet18(in_channels=1, num_classes=10, use_residual=True).to(device)
dummy_input = torch.randn(1, 1, 32, 32).to(device)flops, params = profile(model, (dummy_input,))
print(flops)

        为了验证残差连接对深层卷积神经网络的训练可以起到促进作用,接下来先使用ResNet18(use_residual设置为False)进行手写数字识别实验,再添加残差连接(use_residual设置为True),观察实验对比效果。 

        2 没有残差连接的ResNet18

为了验证残差连接的效果,先使用没有残差连接的ResNet18进行实验。

        2.1 模型训练

        使用训练集和验证集进行模型训练,共训练5个epoch。在实验中,保存准确率最高的模型作为最佳模型。代码实现如下

# 固定随机种子
random.seed(0)
# 学习率大小
lr = 0.005
# 批次大小
batch_size = 64
# 加载数据
train_loader = data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
dev_loader = data.DataLoader(dataset=dev_dataset, batch_size=batch_size)
test_loader = data.DataLoader(dataset=test_dataset, batch_size=batch_size)
# 定义网络,不使用残差结构的深层网络
model = Model_ResNet18(in_channels=1, num_classes=10, use_residual=False)
# 定义优化器
optimizer = opt.SGD(lr=lr, params=model.parameters())
# 定义损失函数
loss_fn = F.cross_entropy
# 定义评价指标
metric = Accuracy(is_logist=True)
# 实例化RunnerV3
runner = RunnerV3(model, optimizer, loss_fn, metric)
# 启动训练
log_steps = 15
eval_steps = 15
runner.train(train_loader, dev_loader, num_epochs=5, log_steps=log_steps,eval_steps=eval_steps, save_path="best_model.pdparams")
# 可视化观察训练集与验证集的Loss变化情况
plot(runner, 'cnn-loss2.pdf')

 

        2.2 模型评价

        使用测试数据对在训练过程中保存的最佳模型进行评价,观察模型在测试集上的准确率以及损失情况。代码实现如下 

3 带残差连接的ResNet18

        3.1 模型训练

使用带残差连接的ResNet18重复上面的实验,代码实现如下:

random.seed(0)
# 加载 mnist 数据集
train_dataset = MNIST_dataset(dataset=train_set, transforms=transforms, mode='train')
test_dataset = MNIST_dataset(dataset=test_set, transforms=transforms, mode='test')
dev_dataset = MNIST_dataset(dataset=dev_set, transforms=transforms, mode='dev')
# 学习率大小
lr = 0.01
# 批次大小
batch_size = 128
# 加载数据
train_loader = data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
dev_loader = data.DataLoader(dev_dataset, batch_size=batch_size)
test_loader = data.DataLoader(test_dataset, batch_size=batch_size)
# 定义网络,通过指定use_residual为True,使用残差结构的深层网络
model = Model_ResNet18(in_channels=1, num_classes=10, use_residual=True)
# 定义优化器
optimizer = opt.SGD(lr=lr, params=model.parameters())
# 定义损失函数
loss_fn = F.cross_entropy
# 定义评价指标
metric = Accuracy(is_logist=True)
# 实例化RunnerV3
runner = RunnerV3(model, optimizer, loss_fn, metric)
# 启动训练
log_steps = 15
eval_steps = 15
runner.train(train_loader, dev_loader, num_epochs=5, log_steps=log_steps,eval_steps=eval_steps, save_path="best_model.pdparams")
# 可视化观察训练集与验证集的Loss变化情况
plot(runner, 'cnn-loss3.pdf')

         3.2 模型评价

        使用测试数据对在训练过程中保存的最佳模型进行评价,观察模型在测试集上的准确率以及损失情况。

# 加载最优模型
runner.load_model('best_model.pdparams')
# 模型评价
score, loss = runner.evaluate(test_loader)
print("[Test] accuracy/loss: {:.4f}/{:.4f}".format(score, loss))

 

4 与高层API实现版本的对比实验

对于Reset18这种比较经典的图像分类网络,pytorch中都为大家提供了实现好的版本,大家可以不再从头开始实现。这里为高层API版本的resnet18模型和自定义的resnet18模型赋予相同的权重,并使用相同的输入数据,观察输出结果是否一致。

import torchvision.models as models
from collections import OrderedDict
import warningswarnings.filterwarnings("ignore")# 使用飞桨HAPI中实现的resnet18模型,该模型默认输入通道数为3,输出类别数1000
hapi_model = models.resnet18()
# 自定义的resnet18模型
model = Model_ResNet18(in_channels=3, num_classes=1000, use_residual=True)# 获取网络的权重
params = hapi_model.state_dict()# 用来保存参数名映射后的网络权重
new_params = {}
# 将参数名进行映射
for key in params:if 'layer' in key:if 'downsample.0' in key:new_params['net.' + key[5:8] + '.shortcut' + key[-7:]] = params[key]elif 'downsample.1' in key:new_params['net.' + key[5:8] + '.bn3.' + key[22:]] = params[key]else:new_params['net.' + key[5:]] = params[key]elif 'conv1.weight' == key:new_params['net.0.0.weight'] = params[key]elif 'conv1.bias' == key:new_params['net.0.0.bias'] = params[key]elif 'bn1' in key:new_params['net.0.1' + key[3:]] = params[key]elif 'fc' in key:new_params['net.7' + key[2:]] = params[key]new_params['net.0.0.bias'] = torch.zeros([64])
# 将飞桨HAPI中实现的resnet18模型的权重参数赋予自定义的resnet18模型,保持两者一致
model.load_state_dict(OrderedDict(new_params))# 这里用np.random创建一个随机数组作为测试数据
inputs = np.random.randn(*[3, 3, 32, 32])
inputs = inputs.astype('float32')
x = torch.tensor(inputs)output = model(x)
hapi_out = hapi_model(x)# 计算两个模型输出的差异
diff = output - hapi_out
# 取差异最大的值
max_diff = torch.max(diff)
print(max_diff)

        注意这里代码跑不通显示如下:

Traceback (most recent call last): File "C:\Users\29134\PycharmProjects\pythonProject\DL\实验12\ResNet.py", line 236, in <module> model.load_state_dict(OrderedDict(new_params)) File "C:\ANACONDA\envs\pytorch\Lib\site-packages\torch\nn\modules\module.py", line 2041, in load_state_dict raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( RuntimeError: Error(s) in loading state_dict for Model_ResNet18: Missing key(s) in state_dict: "net.0.0.bias", "net.1.0.conv1.bias", "net.1.0.conv2.bias", "net.1.1.conv1.bias", "net.1.1.conv2.bias", "net.2.0.conv1.bias", "net.2.0.conv2.bias", "net.2.0.shortcut.bias", "net.2.1.conv1.bias", "net.2.1.conv2.bias", "net.3.0.conv1.bias", "net.3.0.conv2.bias", "net.3.0.shortcut.bias", "net.3.1.conv1.bias", "net.3.1.conv2.bias", "net.4.0.conv1.bias", "net.4.0.conv2.bias", "net.4.0.shortcut.bias", "net.4.1.conv1.bias", "net.4.1.conv2.bias".

         找了很多资料但是依旧没找到怎么解决,同班同学的代码也跑不通,结论怎么出来的疑惑,这两天时间不太充裕全是结课论文,过两天会回来再次尝试解决这个问题的

        总结

首先,使用带残差连接的ResNet模型相比于不带残差的模型,在训练过程中表现出更好的性能。带残差的模型具有更快的收敛速度、更低的损失和更高的准确率。这证明了残差块确实能够为网络带来性能提升,而无脑堆砌网络层并不能有效地提高模型的性能。这个结果也打破了我一直都认为神经网络越深性能越好的理论认知,同时通过学长的博客我认识到残差连接能够有效地缓解梯度消失问题,减少训练难度,并提高了网络的深度和表达能力。这也算一个小小的收获吧(那一大堆推导我真没看懂!!哭)

放上学长的博客:

NNDL 实验六 卷积神经网络(4)ResNet18实现MNIST-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/227729.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

YOLOv5算法进阶改进(5)— 主干网络中引入SCConv | 即插即用的空间和通道维度重构卷积

前言:Hello大家好,我是小哥谈。SCConv是一种用于减少特征冗余的卷积神经网络模块。相对于其他流行的SOTA方法,SCConv可以以更低的计算成本获得更高的准确率。它通过在空间和通道维度上进行重构,从而减少了特征图中的冗余信息。这种模块的设计可以提高卷积神经网络的性能。�…

使用STM32 HAL库驱动光电传感器的设计和优化

光电传感器在许多应用中起着重要的作用&#xff0c;例如自动计数、距离测量等。STM32微控制器和HAL库提供了丰富的功能和易于使用的接口&#xff0c;使得光电传感器的设计和优化变得更加便捷。本文将介绍如何使用STM32 HAL库驱动光电传感器的设计和优化&#xff0c;包括硬件设计…

【前端首屏加载速度优化(一) :nginx 开启gzip压缩】

开启gzip压缩前后对比&#xff1a; nginx.conf具体配置&#xff1a; server {# 启动后的端口listen 8882;# 开启gzip压缩gzip on;gzip_min_length 1k; gzip_buffers 4 16k; gzip_http_version 1.1; gzip_comp_level 6; gzip_types text/plain application/x-javascript…

链接1:编译器驱动程序

文章目录 GNU编译器示例编译 GNU编译器 GNU编译器&#xff08;GNU Compiler&#xff09;是由自由软件基金会&#xff08;Free Software Foundation&#xff0c;FSF&#xff09;开发和维护的一套编译器集合。这些编译器主要用于编译各种编程语言的源代码&#xff0c;将其转换为…

springboot 自定义starter逐级抽取

自定义starter 背景:各个组件需要引入starter 还有自己的配置风格 –基本配置原理 &#xff08;1&#xff09;自定义配置文件 导入配置可以在配置文件中自动识别&#xff0c;提示 导入依赖后可以发现提示 &#xff08;2&#xff09;配置文件实现 –让配置文件对其他模块生…

Python中的datetime库

1. datetime datetime是Python中用于处理日期和时间的类&#xff0c;它包含在datetime模块中。使用datetime类&#xff0c;我们可以创建表示特定日期和时间的对象&#xff0c;以及进行日期和时间的计算和操作。 from datetime import datetime, timedelta# 获取当前日期和时间…

工业产品3d交互展示数字云展厅更绿色环保

随着数字技术的飞速发展&#xff0c;3D全景汽车云展厅平台应运而生&#xff0c;为现代展览带来了前所未有的创新与变革。该平台以其独特的优点&#xff0c;为观众、艺术家和展商带来了全新的展览体验&#xff0c;开启了未来展览的新篇章。 首先&#xff0c;3D全景汽车云展厅平台…

Qt路径和Anaconda中QT路径冲突(ubuntu系统)

最近做一个项目需要配置QT库&#xff0c;本项目配置环境如下&#xff1a; Qt version 5 Operating system, version and so on ubuntu 20.04 Description 之前使用过anaconda环境安装过QT5&#xff0c;所以在项目中CMakeLists文件中使用find_package时候&#xff0c;默认使用An…

python 爬虫之 爬取网站信息并保存到文件

文章目录 前期准备探索该网页的HTML码的特点开始编写代码存入文件总的程序文件存储效果 前期准备 随便找个网站进行爬取&#xff0c;这里我选择的是(一个卖书的网站&#xff09; https://www.bookschina.com/24hour/62700000/ 我的目的是爬取这个网站的这个页面的书籍的名称以…

链接2:静态链接、目标文件、符号和符号表

文章目录 静态链接符号解析 (symbolresolution)重定位 (relocation) 目标文件1.可重定位目标文件2.可执行目标文件3.共享目标文件 可重定位目标文件text:rodata:.data.bss.symtab.rel.text.rel.data:debug:line:strtab: 符号和符号表由m定义并能被其他模块引用的全局符号由其他…

Unity打出的安卓包切换后台再恢复前台,卡顿许久问题记录

连接AndroidStudio发现当切换后台时提示&#xff1a;D/Unity: Multi-casting "[IP] 192.168.31.231 [Port] 55000 [Flags] 19 [Guid] 1268732307 [EditorId] 264356214 [Version] 1048832 [Id] AndroidPlayer(11,Xiaomi_M2012K11AC192.168.31.231) [Debug] 0 [PackageName…

【古月居《ros入门21讲》学习笔记】08_发布者Publisher的编程实现

目录 说明&#xff1a; 1. 话题模型 图示 说明 2. 实现过程&#xff08;C&#xff09; 创建功能包 创建发布者代码&#xff08;C&#xff09; 配置发布者代码编译规则 编译并运行 编译 运行 3. 实现过程&#xff08;Python&#xff09; 创建发布者代码&#xff08;…