智能优化算法应用:基于人工蜂群算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于人工蜂群算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于人工蜂群算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.人工蜂群算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用人工蜂群算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.人工蜂群算法

人工蜂群算法原理请参考:https://blog.csdn.net/u011835903/article/details/108292748
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

人工蜂群算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明人工蜂群算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/228132.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

图解系列--Web服务器,Http首部

1.用单台虚拟主机实现多个域名 HTTP/1.1 规范允许一台 HTTP 服务器搭建多个 Web 站点。。比如,提供 Web 托管服务(Web Hosting Service)的供应商,可以用一台服务器为多位客户服务,也可以以每位客户持有的域名运行各自不…

MySQL在Docker容器中的性能损失分析与优化策略

文章目录 1. Docker容器对MySQL性能的潜在影响1.1. IO性能1.2. 网络性能1.3. 资源隔离 2. 优化策略2.1. 使用本地数据卷2.2. 配置合理的容器网络2.3. 限制容器资源2.4. 使用容器编排工具 3. 性能测试与监控4. 结论 🎉MySQL在Docker容器中的性能损失分析与优化策略 ☆…

好用的json处理工具He3 JSON

官网地址:https://he3app.com/zh/ json格式化 https://portal.he3app.com/home/extension/json-to-pretty 其他 https://portal.he3app.com/home/category

深入理解强化学习——马尔可夫决策过程:贝尔曼期望方程-[举例与代码实现]

分类目录:《深入理解强化学习》总目录 在文章《深入理解强化学习——马尔可夫决策过程:贝尔曼期望方程-[基础知识]》中我们讲到了贝尔曼期望方程,本文就举一个贝尔曼期望方程的具体例子,并给出相应代码实现。 下图是一个马尔可夫…

【安卓】安卓xTS之Media模块 学习笔记(1) xTS介绍

1.背景 Media的安卓xTS相关测试和功能修复已经进行了一段时间了。 在此整理总结下xTS工作总结,留待后续查阅整理。 2. xTS介绍 - 什么是xTS 谷歌的xTS是对谷歌发布的CTS/GTS/VTS/STS/BTS/CTS-on-GSI等一系列测试的统称。 因为安卓系统比较庞大,模块多…

dart多线程双向通信的案例----【小学4年级课程】

下面是运行后的打印顺序 I/flutter (20170): 上班 I/flutter (20170): 这里是校长室:main I/flutter (20170): 这里是饭堂:fantang1 I/flutter (20170): 这里是收发室--检查小孩发回去给他妈妈的信息是:我是秘书的儿子,我来到在校长室了。校长今晚想吃羊…

【SpringCloud系列】@FeignClient微服务轻舞者

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

NX二次开发UF_MTX3_vec_multiply_t 函数介绍

文章作者:里海 来源网站:https://blog.csdn.net/WangPaiFeiXingYuan UF_MTX3_vec_multiply_t Defined in: uf_mtx.h void UF_MTX3_vec_multiply_t(const double vec [ 3 ] , const double mtx [ 9 ] , double vec_product [ 3 ] ) overview 概述 Ret…

windows10 Arcgis pro3.0-3.1

我先安装的arcgis pro3.0,然后下载的3.1。 3.0里面有pro、help、sdk、还有一些补丁包根据个人情况安装。 3.1里面也是这些。 下载 正版试用最新的 ArcGIS Pro 21 天教程,仅需五步!-地理信息云 (giscloud.com.cn) 1、安装windowsdesktop-…

使用docker-compose优雅部署rocketMQ

使用docker-compose优雅部署RocketMQ 随着市场的发展,越来越多的复杂场景出现在我们日常的开发工作中。随之也越来越多的好的工具,也同步出现在程序员的学习范围清单内。好的工具提高产品性能的同时,也带来了很多安装上的问题,do…

申请免费的ssl证书

申请网站: https://freessl.cn/ 解密域名,添加cname跳转 下载acme.sh 工具脚本,地址:https://github.com/acmesh-official/acme.sh/wiki/Install-in-China 下载成功之后的acme.sh是一个目录,进去之后才是脚本 执行…

深入浅出 Vue 中的插槽 slot

深入浅出 Vue 中的插槽 slot start 最近被问到好几次 Vue 中的插槽相关知识,掌握的还是有些不全面。抱着重新学习的心态,写这篇博客。首先对基础知识做一个回顾,然后再对源码实现做一个学习。作者:番茄编写时间:2023…