Spark---SparkCore(四)

三、Spark Master HA

1、Master的高可用原理

Standalone集群只有一个Master,如果Master挂了就无法提交应用程序,需要给Master进行高可用配置,Master的高可用可以使用fileSystem(文件系统)和zookeeper(分布式协调服务)。

fileSystem只有存储功能,可以存储Master的元数据信息,用fileSystem搭建的Master高可用,在Master失败时,需要我们手动启动另外的备用Master,这种方式不推荐使用。

zookeeper有选举和存储功能,可以存储Master的元素据信息,使用zookeeper搭建的Master高可用,当Master挂掉时,备用的Master会自动切换,推荐使用这种方式搭建Master的HA。

2、Master高可用搭建

1)、在Spark Master节点上配置主Master,配置spark-env.sh

export SPARK_DAEMON_JAVA_OPTS="
-Dspark.deploy.recoveryMode=ZOOKEEPER
-Dspark.deploy.zookeeper.url=node3:2181,node4:2181,node5:2181 
-Dspark.deploy.zookeeper.dir=/sparkmaster0821"

2)、发送到其他worker节点上

scp spark-env.sh root@node2:'pwd'
scp spark-env.sh root@node3:'pwd'

3)、找一台节点(非主Master节点)配置备用 Master,修改spark-env.sh配置节点上的MasterIP

export SPARK_MASTER_IP=node2

4)、启动集群之前启动zookeeper集群

../zkServer.sh start

5)、启动spark Standalone集群,启动备用Master

6)、打开主Master和备用Master WebUI页面,观察状态

3、注意点

主备切换过程中不能提交Application

主备切换过程中不影响已经在集群中运行的Application。因为Spark是粗粒度资源调度

4、测试验证

提交SparkPi程序,kill主Master观察现象。

./spark-submit 
--master spark://node1:7077,node2:7077 
--class org.apache.spark.examples.SparkPi 
../lib/spark-examples-1.6.0-hadoop2.6.0.jar 
10000

四、Spark Shuffle

1、SparkShuffle概念

reduceByKey会将上一个RDD中的每一个key对应的所有value聚合成一个value,然后生成一个新的RDD,元素类型是<key,value>对的形式,这样每一个key对应一个聚合起来的value。

问题:聚合之前,每一个key对应的value不一定都是在一个partition中,也不太可能在同一个节点上,因为RDD是分布式的弹性的数据集,RDD的partition极有可能分布在各个节点上。

如何聚合?

– Shuffle Write:上一个stage的每个map task就必须保证将自己处理的当前分区的数据相同的key写入一个分区文件中,可能会写入多个不同的分区文件中。

 – Shuffle Read:reduce task就会从上一个stage的所有task所在的机器上寻找属于己的那些分区文件,这样就可以保证每一个key所对应的value都会汇聚到同一个节点上去处理和聚合。

Spark中有两种Shuffle管理类型,HashShufflManager和SortShuffleManager,Spark1.2之前是HashShuffleManager, Spark1.2引入SortShuffleManager,在Spark 2.0+版本中已经将HashShuffleManager丢弃。

2、HashShuffleManager

1)、普通机制

普通机制示意图

执行流程
  1. 每一个map task将不同结果写到不同的buffer中,每个buffer的大小为32K。buffer起到数据缓存的作用。
  2. 每个buffer文件最后对应一个磁盘小文件。
  3. reduce task来拉取对应的磁盘小文件。
总结
  • .map task的计算结果会根据分区器(默认是hashPartitioner)来决定写入到哪一个磁盘小文件中去。ReduceTask会去Map端拉取相应的磁盘小文件。
  • .产生的磁盘小文件的个数:

M(map task的个数)*R(reduce task的个数)

存在的问题

产生的磁盘小文件过多,会导致以下问题:

  1. 在Shuffle Write过程中会产生很多写磁盘小文件的对象。
  2. 在Shuffle Read过程中会产生很多读取磁盘小文件的对象。
  3. 在JVM堆内存中对象过多会造成频繁的gc,gc还无法解决运行所需要的内存 的话,就会OOM。
  4. 在数据传输过程中会有频繁的网络通信,频繁的网络通信出现通信故障的可能性大大增加,一旦网络通信出现了故障会导致shuffle file cannot find 由于这个错误导致的task失败,TaskScheduler不负责重试,由DAGScheduler负责重试Stage。

2)、合并机制

合并机制示意图

总结

产生磁盘小文件的个数:C(core的个数)*R(reduce的个数)

3、SortShuffleManager

1)、普通机制

普通机制示意图

执行流程
  1. map task 的计算结果会写入到一个内存数据结构里面,内存数据结构默认是5M
  2. 在shuffle的时候会有一个定时器,不定期的去估算这个内存结构的大小,当内存结构中的数据超过5M时,比如现在内存结构中的数据为5.01M,那么他会申请5.01*2-5=5.02M内存给内存数据结构。
  3. 如果申请成功不会进行溢写,如果申请不成功,这时候会发生溢写磁盘。
  4. 在溢写之前内存结构中的数据会进行排序分区
  5. 然后开始溢写磁盘,写磁盘是以batch的形式去写,一个batch是1万条数据,
  6. map task执行完成后,会将这些磁盘小文件合并成一个大的磁盘文件,同时生成一个索引文件。
  7. reduce task去map端拉取数据的时候,首先解析索引文件,根据索引文件再去拉取对应的数据。
总结

产生磁盘小文件的个数: 2*M(map task的个数)

2)、bypass机制

bypass机制示意图

总结
  • .bypass运行机制的触发条件如下:shuffle reduce task的数量小于spark.shuffle.sort.bypassMergeThreshold的参数值。这个值默认是200。
  • .产生的磁盘小文件为:2*M(map task的个数)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/229577.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

elasticsearch 实战

文章目录 项目介绍导入项目 Elasticsearch Java API 查询文档快速入门发起查询请求解析响应完整代码 match查询精确查询布尔查询排序、分页高亮高亮请求构建高亮结果解析 项目介绍 本项目是一个由spring boot 3.0.2在gradle 8.4和java 21的环境下搭建的elasticsearch项目demo&…

HCIP-十二、BGP常用属性

十二、BGP常用属性 实验拓扑实验需求及解法1.IP 地址已配置&#xff0c;自行测试直连。2.AS100 中运行 OSPF3.AS200 中运行 ISIS4.运行 BGP5.发布 BGP 路由6.修改起源属性 Origin7.修改 AS-path8.修改本地优先 Local-preference9.修改 MED 实验拓扑 实验需求及解法 本实验模拟…

【黑马程序员】——微服务全套——实战篇1

目录&#xff1a; 微服务技术栈导学1微服务技术栈导学2认识微服务-服务架构演变认识微服务-微服务技术对比认识微服务-SpringCloud服务拆分-案例Demo服务拆分-服务远程调用Eureka-提供者与消费者Eureka-eureka原理分析Eureka-搭建eureka服务Eureka-服务注册Eureka-服务发现Rib…

前馈式神经网络与反馈式神经网络的区别,联系,各自的应用范围和场景!!!

文章目录 前言一、前馈式神经网络是什么&#xff1f;二、前馈式神经网络包括&#xff1a;三、反馈式神经网络是什么&#xff1f;四、反馈式神经网络包括&#xff1a;总结 前言 前馈式神经网络和反馈式神经网络是两种主要的神经网络架构&#xff0c;它们在网络结构和应用场景上…

超卓航科聚国内外专家学者,共推冷喷涂技术的发展与应用

11月24日——26日&#xff0c;冷喷涂技术及其在增材制造中的应用专题会在襄阳召开&#xff0c;来自国内外200多名科技工作者齐聚一堂&#xff0c;共同交流冷喷涂技术的研究与应用。 本次专题研讨会由中国机械工程学会表面工程分会主办&#xff0c;湖北超卓航空科技股份有限公司…

docker镜像分层、仓库、容器数据卷与常用软件安装

一、镜像分层 1、镜像概念&#xff1a; 镜像是一种轻量级、可执行的独立软件包&#xff0c;它包含运行某个软件所需的所有内容&#xff0c;将应用程序和配置依赖打包好行成一个可交付的运行环境&#xff0c;这个打包好的运行环境就是image镜像文件。 2、镜像分层&#xff1a…

哈希函数:保护数据完整性的关键

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

额,收到阿里云给的赔偿了!

众所周知&#xff0c;就在刚过去不久的11月12号&#xff0c;阿里云突发了一次大规模故障&#xff0c;影响甚广。 以至于连咱们这里评论区小伙伴学校的洗衣机都崩了&#xff08;手动doge&#xff09;。 这么关键的双11节点&#xff0c;这么多热门业务和产品&#xff0c;这么大规…

应用在智能手环距离检测领域的数字红外接近检测模块

智能手环是现代人日常生活中的一种智能配件&#xff0c;可以帮助我们记录运动数据、监测身体健康状况等。然而&#xff0c;对于许多用户来说&#xff0c;关注的问题之一就是智能手环的有效距离和精准度。智能手环通过内置传感器收集数据并将其发送到手机或其他设备上进行处理。…

毫米波雷达DOA角度计算-----MUSIC算法

MUSIC算法如下&#xff1a; txNum &#xff1a;发射天线 2个 &#xff0c;rxNum&#xff1a;接收天线 4 个 。 ant &#xff1a; 为目标点的 天线 接收数据 &#xff0c; 为 8*1矩阵。 A ant;d 0.5;M 1; % # 快拍数ang_ax -90:90; % 角度坐标% 接收信号方向向量for k1:…

用Python爬取电影数据并可视化分析

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…

离散系统的频域分析(数字信号处理实验2-1)

创建具有15 Hz和40 Hz分量频率的信号&#xff0c;叠加两个信号形成混合信号x&#xff0c;使用fft命令绘制x的频域图&#xff0c;标注频率为横坐标&#xff0c;平均能量为纵坐标。 文章目录 一.题目二.实验目的三.实验仪器四.实验原理1.MATLAB使用函数2.离散傅里叶变换(DFT)实验…