c语言-数据在内存中的存储

文章目录

    • 1. 整数在内存中的存储
    • 2. 大小端字节序和字节序判断
    • 3. 浮点数在内存中的存储


1. 整数在内存中的存储

1.整数的2进制表示方法有三种,即 原码、反码和补码
2. 三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位最高位的一位是被当做符号位,剩余的都是数值位。
3. 存储时存储的是补码,取出的时取出的原码

如:
在这里插入图片描述
正负数的原码、反码、补码转换

正整数的原、反、补码都相同。
负整数的三种表示方法各不相同。 原码:直接将数值按照正负数的形式翻译成⼆进制得到的就是原码。 反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。 补码:反码+1就得到补码。
补码转换原码,将上述过程反过来即可 :补码-1得到反码,反码符号位不变,其他位依次按位取反就可以得到原码了

如,存储int类型 -1,和1
在这里插入图片描述

对于整形来说:数据存放内存中其实存放的是补码。

为什么呢?
在计算机系统中,数值⼀律用补码来表⽰和存储。
原因在于,使用补码,可以将符号位和数值域统⼀处理;同时,加法和减法也可以统⼀处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。

无符号类型:
即将符号位去掉,将所有位当数值位
在这里插入图片描述
无符号位的原码、反码、补码相同
如:unsigned int 1 、-1
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/c2af36d05c584bf8a32a5ccef41f35ea.png

2. 大小端字节序和字节序判断

什么是大小端?

其实超过⼀个字节的数据在内存中存储的时候,就有存储顺序的问题,按照不同的存储顺序,我们分
为大端字节序存储和小端字节序存储,下面是具体的概念:
大端(存储)模式:是指数据的低位字节内容保存在内存的⾼地址处,而数据的⾼位字节内容,保存 在内存的低地址处。
小端(存储)模式:是指数据的低位字节内容保存在内存的低地址处,而数据的⾼位字节内容,保存 在内存的高地址处。

为什么有大小端?

这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着⼀个字节,⼀个字节为8 bit 位,但是在C语⾔中除了8 bit 的> char 之外,还有16 bit 的 short 型,32 bit 的 long 型(要看 具体的编译器),另外,对于位数⼤于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度⼤ 于⼀个字节,那么必然存在着⼀个如何将多个字节安排的问题。因此就导致了⼤端存储模式和⼩端存 储模式。
例如:⼀个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为⾼字节, 0x22 为低字节。对于⼤端模式,就将0x11 放在低地址中,即 0x0010 中, 0x22 放在高地址中,即 0x0011 中。小端模式,刚好相反。我们常⽤的 X86结构是小端模式,⽽ KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。

例:
如何存储0x11223344

int main() {int a = 0x11223344;return 0;
}

在这里插入图片描述
练习:
设计⼀个小程序来判断当前机器的字节序

1.大端和小端的区别在于存储的字节序
2.我们只需要取低地址的一个字节就可以观察是大端还是小端了

代码实现:

#include <stdio.h>
int check_sys()
{int i = 1;//设置i=1,只观察第一个字节return (*(char *)&i);//强制类型将&i转为char*(为了只取第一个字节),再解引用得到第一个字节的内容
}
int main()
{int ret = check_sys();//调用函数,看返回值if(ret == 1){printf("⼩端\n");}else{printf("⼤端\n");}return 0;}

3. 浮点数在内存中的存储

**1.常见的浮点数:**3.14159、1E10等,浮点数家族包括: float、double、long double 类型。
浮点数表示的范围: float.h 中定义

2.浮点数的存储
根据国际标准IEEE(电气和电子工程协会) 754,任意⼀个⼆进制浮点数V可以表示成下面的形式:
V = (−1) ∗ S M ∗ 2E
• (−1)S 表示符号位,当S=0,V为正数;当S=1,V为负数
• M 表示有效数字,M是大于等于1,小于2的
• 2^E 表示指数位
举例来说:
在这里插入图片描述

IEEE 754规定:

对于32位的浮点数,最高的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M
对于64位的浮点数,最高的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M

float类型浮点数内存分配
在这里插入图片描述

double类型浮点数内存分配
在这里插入图片描述

3. 浮点数存的过程
IEEE 754 对有效数字M和指数E,还有⼀些特别规定。

前⾯说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中 xxxxxx 表示数部分。 IEEE 754
规定,在计算机内部保存M时,默认这个数的第⼀位总是1,因此可以被舍去,只保存后⾯的xxxxxx部分。⽐如保存1.01的时候,只保存01,等到读取的时候,再把第⼀位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保 存24位有效数字。

至于指数E,情况就比较复杂

首先,E为⼀个无符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0-255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE
754规定,存⼊内存时E的真实值必须再加上⼀个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

我们将上述例子存储起来:
假设5.5是float类型
在这里插入图片描述
M的首位可以省略掉,存储小数点后面的数即可
4.浮点数取的过程

S ->判断正负
M->按存储时候的顺序取出,并前面加1,如上面的例子:.011,然后再在前面加1->M=1.011
指数E从内存中取出还可以再分成三种情况:
E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效 数字前加上第⼀位的1。 比如:0.5 的⼆进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其 阶码为-1+127(中间值)=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位
00000000000000000000000,则其⼆进制表示形式为:0 01111110 00000000000000000000000
E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第⼀位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。 如:0 0000000000100000000000000000000
E全为1
这时,如果有效数字M全为0,表⽰±⽆穷⼤(正负取决于符号位s) 如:0 11111111 00010000000000000000000

5.精度问题
在存储一个浮点数时,由于存储的比特位是有限的,fioat-23位,double-52位,一旦超过这个位数就会出现精度丢失的问题
如:打印99.7时

int main() {float a = 99.7;printf("%f", a);return 0;
}

运行结果:
在这里插入图片描述
丢失了一些数据。
总结:

(1)有些浮点数在内存中无法精确保存
(2)double精度一定比float的高
(3)浮点数在比较时可能会出现问题

练习:

#include <stdio.h>
int main()
{int n = 9;float *pFloat = (float *)&n;printf("n的值为:%d\n",n);printf("*pFloat的值为:%f\n",*pFloat);*pFloat = 9.0;printf("num的值为:%d\n",n);printf("*pFloat的值为:%f\n",*pFloat);return 0;}

输出的结果是什么?
在这里插入图片描述

解析:
在这里插入图片描述

以上就是我的分享了,如果有什么错误,欢迎在评论区留言。
最后,谢谢大家的观看!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/229860.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Offer来了:Java面试核心知识点精讲

系列文章目录 送书第一期 《用户画像&#xff1a;平台构建与业务实践》 送书活动之抽奖工具的打造 《获取博客评论用户抽取幸运中奖者》 送书第二期 《Spring Cloud Alibaba核心技术与实战案例》 送书第三期 《深入浅出Java虚拟机》 送书第四期 《AI时代项目经理成长之道》 …

vue3 setup语法糖,常用的几个:defineProps、defineEmits、defineExpose、

vue3和vue2组件之间传参的不同 <script setup> 是在单文件组件 (SFC) 中使用组合式 API 的编译时语法糖。 <script setup> 中的代码会在每次组件实例被创建的时候执行。 任何在 <script setup> 声明的顶层的绑定 (包括变量&#xff0c;函数声明&#xff0…

网站公安备案流程

1.公安备案网址 https://beian.mps.gov.cn/ 选择用户登录->法人用户登录 左边的码下载APP&#xff0c;登上去之后用APP扫右边的码&#xff0c;人脸识别

springboot实现邮箱发送功能

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 邮箱效果图一、pom配置二、页面编写三、配置yml四、邮件工具类五、测试发送 邮箱效果图 1.可以利用在出现问题进行邮箱提醒 2.编写html 用于在邮箱中展示的样式 提示…

基于IDEA+MySQL+Tomcat开发的高校毕业生就业信息管理系统

基于IDEAMySQLTomcat开发的高校毕业生就业信息管理系统 项目介绍&#x1f481;&#x1f3fb; 高校毕业生信息管理系统背景介绍 随着高等教育的发展和信息化技术的普及&#xff0c;高校毕业生信息管理面临着越来越多的挑战。为了解决这些问题&#xff0c;我们开发了高校毕业生信…

校园跑腿的核心功能

校园跑腿是指在校园内提供各种代办和服务的便利服务。 1. 快速送货&#xff1a;校园跑腿可以提供快速的送货服务&#xff0c;包括食品、快递、文件等物品的送达。 2. 打印复印&#xff1a;校园跑腿可以提供打印、复印等文档处理服务&#xff0c;方便学生和教职工处理各种文档…

C语言基础程序设计题

1.个人所得税计算 应纳税款的计算公式如下&#xff1a;收入<&#xff1d;1000元部分税率为0&#xff05;&#xff0c;2000元>&#xff1d;收入>1000元的部分税率为5&#xff05;&#xff0c;3000元>&#xff1d;收入>2000元的部分税率为10&#xff05;&#xf…

通用闪存存储(UFS)市场研究,预计2029年将达到1,930.99百万美元

UFS产品定义及统计范围 UFS &#xff08;Universal Flash Storage&#xff0c;通用闪存存储&#xff09;&#xff0c;UFS是一种高性能接口&#xff0c;设计用于需要最小化功耗的应用&#xff0c;包括智能手机和平板电脑等移动系统以及汽车应用&#xff0c;其高速串行接口和优化…

RocketMQ源码剖析之createUniqID方法

目录 版本信息&#xff1a; 写在前面&#xff1a; 源码剖析&#xff1a; 总计&#xff1a; 版本信息&#xff1a; RocketMQ-5.1.3 源码地址&#xff1a;https://github.com/apache/rocketmq 写在前面&#xff1a; 首先&#xff0c;笔者先吐槽一下RocketMQ的官方&#xff0…

AMIS【部署 01】amis前端低代码框架可视化编辑器amis-editor本地部署流程

amis-editor本地部署流程 1.amis-editor是什么1.1 amis是什么1.2 amis-editor是什么 2.amis-editor本地部署2.1 准备阶段2.2 源码修改2.3 构建项目2.4 nginx配置2.5 启动nginx 3.总结 官网仅贴出了本地运行这个项目的步骤&#xff1a; # 1.安装依赖 npm i # 2.等编译完成后本地…

springboot基础配置及maven运行

目录 1、spring快速开始&#xff1a; 2、通过idea工具打开导入包 3、maven打包 1、springboot快速开始&#xff1a; 环境依赖&#xff1a;jdk17 Spring | Quickstart spring初始化包下载&#xff1a; 点击generate&#xff0c;下载包 2、通过idea工具打开导入包 我之前写了…

多模态大模型总结2(主要2023年)

LLaVA-V1&#xff08;2023/04&#xff09; 论文&#xff1a;Visual Instruction Tuning 网络结构 如下图 所示为 LLaVA-v1 的模型结构&#xff0c;可以看出其简化了很多&#xff0c;但整体来说还是由三个组件构成&#xff1a; Vision Encoder&#xff1a;和 Flamingo 模型的 V…