智能优化算法应用:基于鸟群算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于鸟群算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于鸟群算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.鸟群算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用鸟群算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.鸟群算法

鸟群算法原理请参考:https://blog.csdn.net/u011835903/article/details/108529990
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

鸟群算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明鸟群算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/230615.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一文1000字彻底搞懂Web测试与App测试的区别

总结分享一些项目需要结合Web测试和App测试的工作经验给大家: 从功能测试区分,Web测试与App测试在测试用例设计和测试流程上没什么区别。 而两者的主要区别体现在如下几个方面: 1 系统结构方面 Web项目,B/S架构,基…

使用 Docker 安装和配置 MySQL 数据库简介

目录 一、使用镜像安装 1、查询镜像 2、拉取镜像 3、查看本地镜像 4、启动docker镜像 二、使用Docker Compose安装 1、安装Docker和Docker Compose 2、创建Docker Compose文件: 3、启动MySQL容器 4、验证MySQL容器是否正常运行 5、连接到MySQL容器 6、停止…

ModBus电表与RS485电表有哪些区别?

在能源计量领域,ModBus电表和RS485电表是两种常见的设备,它们都具有监测和记录电能数据的功能。然而,它们之间存在一些区别,比如通信协议、连接方式、数据格式等等参数的区别有哪些? ModBus电表和RS485电表都是用于电能…

JVM——内存溢出和内存泄漏

目录 1. 内存溢出和内存泄漏内存泄漏的常见场景解决内存溢出的思路1.发现问题 – Top命令2.发现问题 – VisualVM3.发现问题 – Arthas4.发现问题 – Prometheus Grafana5.发现问题 – 堆内存状况的对比![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/058d113715b…

JAVA - 阻塞队列

一、什么是堵塞队列 堵塞队列(Blocking Queue)是一种特殊类型的队列,它具有一些特定的行为和限制。在堵塞队列中,当队列为空时,尝试从队列中取出元素的操作将会被阻塞,直到队列中有可用元素;当…

常见的AI安全风险(数据投毒、后门攻击、对抗样本攻击、模型窃取攻击等)

文章目录 数据投毒(Data Poisoning)后门攻击(Backdoor Attacks)对抗样本攻击(Adversarial Examples)模型窃取攻击(Model Extraction Attacks)参考资料 数据投毒(Data Poi…

Python-pip配置国内镜像源,快速下载包

文章目录 国内镜像源临时使用永久配置添加环境变量Path测试关于Python技术储备一、Python所有方向的学习路线二、Python基础学习视频三、精品Python学习书籍四、Python工具包项目源码合集①Python工具包②Python实战案例③Python小游戏源码五、面试资料六、Python兼职渠道 国内…

燃料电池汽车市场分析:预计2028年将达到118亿美元

燃料电池汽车( FCV) 是一种用车载燃料电池装置产生的电力作为动力的汽车。车载燃料电池装置所使用的燃料为高纯度氢气或含氢燃料经重整所得到的高含氢重整气。与通常的电动汽车比较, 其动力方面的不同在于FCV 用的电力来自车载燃料电池装置, 电动汽车所用的电力来自由电网充电的…

【SpringCloud】设计原则之单一职责与服务拆分

一、设计原则之单一职责 设计原则很重要的一点就是简单,单一职责也就是所谓的专人干专事 一个单元(一个类、函数或微服务)应该有且只有一个职责 无论如何,一个微服务不应该包含多于一个的职责 职责单一的后果之一就是职责单…

Python基础语法之学习input()函数

Python基础语法之学习input函数 前言一、代码二、效果 前言 一、代码 # 默认是字符串类型 number input("请输入一个数字:") print("输入的数字是",number)二、效果 没有人可以阻止你成为自己想成为的人,只有你自己才能放弃梦想。…

【c语言:常用字符串函数与内存函数的使用与实现】

文章目录 1. strlen函数1.1使用1.2模拟实现 2.strcmp函数2.1使用2.2模拟实现 3.strncmp函数3.1使用3.2模拟实现 4.strcpy函数4.1 使用4.2模拟实现 5.strcncpy5.1使用5.2模拟实现 6.strcat函数6.1使用6.2模拟实现 7.strncat函数7.1使用7.2模拟实现 8.strstr函数8.1使用8.2模拟实…

计算机视觉:使用dlib实现人脸检测

1 dlib介绍 Dlib是一个广泛使用的开源库,在计算机视觉和机器学习领域具有重要影响。它是由Davis King在2002年开发,主要用C语言编写,但也提供了Python接口。Dlib结合了高效的算法和易用性,使其成为学术界和工业界的热门选择。 1.…