【数据结构】八大排序 (三)

目录

前言:

快速排序

快速排序非递归实现

快速排序特性总结

归并排序

归并排序的代码实现

归并排序的特性总结

计数排序

计数排序的代码实现

计数排序的特性总结


前言:

前文快速排序采用了递归实现,而递归会开辟函数栈帧,递归的深度越深,占用栈区的空间就越大,栈区的大小一般是8M,10M,当递归深度足够深时,栈区的空间就会被用完,导致栈溢出,此时需要将递归改为非递归更加稳妥,本篇继续详细解读快排的非递归实现,归并排序,计数排序;

快速排序

快速排序非递归实现

  • 采用递归实现快速排序时,而递归就是不断调用单趟排序函数的功能,若不采用递归,什么可以实现不断调用单趟排序函数的功能?
  • 循环;
  • 循环只要满足循环条件,就会不断调用单趟排序函数的功能,但是每次递归调用时单趟排序函数的参数是变化的,而循环条件确是一成不变的,递归会在栈上建立函数栈帧,而函数栈帧里面存放下次调用该函数的参数,若采用非递归,那我们就必须把每一次循环的参数记录下来,供单趟排序使用,如何解决?
  •  使用顺序栈或者链式栈记录每次函数参数,栈的实现采用动态内存开辟,存储空间是堆区开辟的空间,堆区大小可达2G;

快速排序非递归实现步骤:

  1. 创建一个栈,将整个序列的起始位置和结束位置入栈;
  2. 当栈不为空时,弹出栈顶元素,取出该区间的起始位置 left 和结束位置 right;
  3. 对该区间进行划分,获取划分点 keyi;
  4. 如果keyi左边还有元素,将左半部分的起始位置left和结束位置keyi-1入栈;
  5. 如果keyi右边还有元素,将右半部分的起始位置keyi+1和结束位置right入栈;
  6. 重复步骤2-5,直到栈为空;
  •  栈的特性为后入先出先将待排序序列的右边界 right入栈后将待排序序列的左边界left入栈;出栈时(获取栈顶元素)就可以先取到左边界值left ,后取到右边界值right;

  •  先获取栈顶元素,然后出栈,先取到0给left,后取到7给right,进行单趟排序(hoare版本)

  •  区间被划分为【left,keyi-1】 U keyi U 【keyi+1, right】(left=0, keyi-1=3,keyi+1=5,right=7),为了先处理划分后的左子序列,先将右子区间的边界值right keyi+1分别入栈(先入right,后入keyi+1) ,然后将左子区间的边界值keyi-1,left分别入栈(先入keyi-1,  后入left);

  •  先取栈顶元素,然后出栈,先取到的元素给left ,后取到的元素给right (left=0, right=3), 进行单趟排序(hoare版本);

  •  keyi左边没有元素,keyi右边还有元素,将右半部分的起始位置keyi+1和结束位置right入栈(right先入栈,keyi+1后入栈)

  •   先取栈顶元素,然后出栈,先取到的元素给left ,后取到的元素给right (left=1, right=3), 进行单趟排序(hoare版本);

  •  keyi左边没有元素,keyi右边还有元素,将右半部分的起始位置keyi+1和结束位置right入栈(right先入栈,keyi+1后入栈)

 

  • 左子区间全部被排完,此时才可以取出5和7排右子区间,右子区间按相同流程处理即可;

顺序栈与链式栈的实现:顺序栈与链式栈_顺序栈和链栈-CSDN博客

//快排非递归实现
void QuickSortNonR(int* a, int begin, int end)
{Stack st;InitStack(&st);StackPush(&st, end);StackPush(&st, begin);while (!StackEmpty(&st)){int left = StackTop(&st);StackPop(&st);int right = StackTop(&st);StackPop(&st);int keyi = PartSort(a, left, right);//[left keyi-1] keyi [keyi+1 right]if (right > keyi + 1){StackPush(&st, right);StackPush(&st, keyi+1);}if (keyi - 1 > left){StackPush(&st, keyi - 1);StackPush(&st, left);}}DestroyStack(&st);
}

快速排序特性总结

1. 时间复杂度

因为每次排序都将待排序序列分成两部分,每部分的长度大约为原序列的一半,因此需要进行logn次排序,每次排序的时间复杂度为O(n),所以快速排序的时间复杂度为O(n*logn)

2. 空间复杂度

因为每次排序需要使用递归调用,每次调用需要使用一定的栈空间,所以快速排序的空间复杂度为O(logn)

3. 算法稳定性

快速排序的算法不稳定,这是因为在排序过程中,可能会出现相同元素的相对位置发生变化的情况;当待排序序列中存在多个相同的元素时,快速排序可能会将它们分到不同的子序列中,从而导致它们的相对位置发生变化;

归并排序

归并排序的基本思想:

将待排序的序列分成若干个子序列,每个子序列都是有序的,然后再将这些有序的子序列合并成一个大的有序序列;

具体实现过程通常采用递归的方法,将序列递归地分成两半,对每一半分别进行归并排序,最后将两个有序的子序列合并成一个有序的序列;在合并的过程中,需要开辟一个数组来存储合并后的序列,然后再将临时数组中的元素拷贝回原数组中;

归并排序的基本思想可以总结为以下三个步骤:

  1. 分割:将待排序的序列分成若干个子序列,每个子序列都是有序的;
  2. 合并:将有序的子序列归并到开辟后的数组形成一个大的有序序列;
  3. 复制:将临时数组中的元素复制回原数组中;

归并排序的实现步骤:

  1. 分割:将待排序数组从中间位置分成两个子数组,直到每个子数组只有一个元素为止;
  2. 归并:将两个有序子数组合并成一个大的有序数组;
    • 开辟一个新数组,新数组的大小与原数组大小相同,定义三个指针,分别指向两个子数组和新数组;
    • 比较两个子数组的第一个元素,将较小的元素放入新数组中,并将指向该元素的指针向后移动一位;
    • 重复上一步,直到其中一个子数组的元素全部放入新数组中;
    • 将另一个子数组中剩余的元素依次放入新数组中;

归并排序的代码实现

//归并排序(递归)
//将待排序序列不断二分,直到每个子序列只有一个元素为止,只有一个元素,序列一定有序;
//将相邻的两个子序列合并成一个有序的序列,直到所有子序列都被合并成一个完整的序列;
void SubMergeSort(int* a, int* tmp, int begin, int end)
{if (begin >= end)return;int mid = (begin + end) / 2;//划分区间为[begin,mid]U[mid+1,end]int begin1 = begin, end1 = mid;int begin2 = mid + 1, end2 = end;//递归终止的条件为区间只包含一个元素或者区间不存在;//后序遍历SubMergeSort(a, tmp, begin1, end1);SubMergeSort(a, tmp, begin2, end2);
//首先归并到tmp数组,然后拷贝到原数组;int index = begin;//tmp数组下标while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[index++] = a[begin1++];}else{tmp[index++] = a[begin2++];}}//begin1>end1与begin2>end2至少有一个发生while (begin1 <= end1){tmp[index++] = a[begin1++];}while (begin2 <= end2){tmp[index++] = a[begin2++];}//拷贝到原数组memcpy(a + begin, tmp + begin, (end - begin + 1)*sizeof(int));
}
void MergeSort(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int)*n);if (tmp == NULL){perror("malloc failed");return;}SubMergeSort(a, tmp, 0, n - 1);
}

归并排序的特性总结

1. 时间复杂度

归并排序的时间复杂度可以通过递归树来分析;在递归树中,每个节点表示对一个区间进行排序的时间复杂度,而每个节点的子节点表示对该区间的两个子区间进行排序的时间复杂度,因此,递归树的深度为logn,每层的时间复杂度为O(n),因此归并排序的时间复杂度为O(nlogn)

2. 空间复杂度

归并排序的空间复杂度为O(n),因为在排序过程中需要创建一个长度为n的临时数组来存储排序结果;

3. 算法稳定性

归并排序是一种稳定的排序算法,因为在合并两个有序子序列的过程中,如果两个元素相等,那么先出现的元素会先被放入结果数组中,保证了排序的稳定性;

计数排序

计数排序的基本思想:

计数排序不是一个基于比较的排序算法,是记录数据出现次数的一种排序算法;计数排序使用一个额外的count数组,其中第i个元素是待排序数组中值等于i的元素的个数,然后根据count数组来将待排序数组中的元素排到正确的位置;

计数排序的实现步骤:

  1. 遍历原数组,找出原数组中的最大值max,最小值min;
  2. 创建count数组,数组大小为max-min+1,并将其元素初始化为0;
  3. 将原数组里面的值减去原数组最小值min作为count数组的下标映射下来,而count数组里面存放的值就是原数组里面值出现的次数;
  4. 从前向后依次填充数组,填充数组时,只需要加上这个最小值,就能还原出原来的值;

计数排序的代码实现

//计数排序
void CountSort(int* a, int n)
{//寻找最大值,最小值int min = a[0];int max = a[0];for (int i = 0; i < n; i++){if (a[i] < min)min = a[i];if (a[i]>max)max = a[i];}//确定新数组count的大小int range = max - min + 1;int* count = (int*)malloc(sizeof(int)*range);if (count == NULL){perror("malloc failed:");return;}//新数组全部初始化为0,方便计数memset(count, 0, sizeof(int)*range);//统计数据出现的次数for (int i = 0; i < n; i++){count[a[i] - min]++;}//从前向后依次填充原数组int j = 0;for (int i = 0; i < range; i++){while (count[i]--){a[j++] = i + min;}}free(count);
}

计数排序的特性总结

1. 时间复杂度

计数排序的时间复杂度与待排序元素的范围相关,其时间复杂度为O(n+k),其中n为元素数量,k为元素的范围(即最大的元素与最小的元素的差加1);

2. 空间复杂度

计数排序需要额外开辟的空间大小k=max+min-1,所以空间复杂度为O(k)

3. 算法稳定性

计数排序是一个非基于比较的线性时间排序算法,是一种稳定排序

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/231033.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

二叉树OJ题之二

今天我们一起来看一道判断一棵树是否为对称二叉树的题&#xff0c;力扣101题&#xff0c; https://leetcode.cn/problems/symmetric-tree/ 我们首先先来分析这道题&#xff0c;要判断这道题是否对称&#xff0c;我们首先需要判断的是这颗树根节点的左右子树是否对称&#xff0…

AIoT智能物联网平台技术架构参考

具体来说&#xff0c;AIoT平台能够实现智能终端设备之间、不同系统平台之间、不同应用场景之间的互融互通&#xff0c;进一步推动万物互联的进程。 AIoT智能物联网平台是结合了人工智能&#xff08;AI&#xff09;和物联网&#xff08;IoT&#xff09;技术的平台。它旨在通过物…

tomcat调优配置

一. 设置账户进入管理页面 通过浏览器进入Tomcat7的管理模块页面&#xff1a;http://localhost:8080/manager/status 按照提示&#xff0c;在Tomcat7服务器指定的位置修改配置文件&#xff08;conf/tomcat-users.xml&#xff09;&#xff0c;增加相应的用户和角色配置标签 <…

Linux常用命令----cp 命令

文章目录 1. 基本用法2. 保留文件属性3. 递归复制4. 仅复制更新的文件5. 交互式复制6. 创建符号链接而非复制7. 复制并备份目标文件8. 指定备份后缀9. 详细输出总结 Linux操作系统中&#xff0c;cp 命令是一个非常基础且强大的工具&#xff0c;用于复制文件或目录。本文将详细介…

电子学会C/C++编程等级考试2022年09月(三级)真题解析

C/C++等级考试(1~8级)全部真题・点这里 第1题:课程冲突 小 A 修了 n 门课程, 第 i 门课程是从第 ai 天一直上到第 bi 天。 定义两门课程的冲突程度为 : 有几天是这两门课程都要上的。 例如 a1=1,b1=3,a2=2,b2=4 时, 这两门课的冲突程度为 2。 现在你需要求的是这 n 门课…

全局异常处理类

全局异常处理类 创建步骤 定义一个自己的全局错误处理类GlobalExceptionHandler创建一个ExceptionHandler类&#xff0c;主要是用ControllerAdvice和 ExceptionHandler处理错误信息 以下说明各个注解的作用&#xff1a; ControllerAdvice(annotations {RestController.class…

基于Django+Tensorflow卷积神经网络鸟类识别系统

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介系统概述系统功能核心技术系统架构系统优势 二、功能三、系统四. 总结  总结 一项目简介 介绍一个基于DjangoTensorflow卷积神经网络鸟类识别系统是一个非…

8.3 Windows驱动开发:内核遍历文件或目录

在笔者前一篇文章《内核文件读写系列函数》简单的介绍了内核中如何对文件进行基本的读写操作&#xff0c;本章我们将实现内核下遍历文件或目录这一功能&#xff0c;该功能的实现需要依赖于ZwQueryDirectoryFile这个内核API函数来实现&#xff0c;该函数可返回给定文件句柄指定的…

MyBatis使用教程详解<下>

回顾上一篇博文,我们讲了如何使用注解/XML的方式来操作数据库,实际上,一个Mapper接口的实现,这两种方式是可以并存的. 上一篇博文中,我们演示的都是比较简单的SQL语句,没有设计到复杂的逻辑,本篇博文会讲解复杂SQL的实现及一些细节处理.话不多说,让我们开始吧. 一. #{}和${} …

软文推广中什么样的热点值得追?

只要媒体存在一日&#xff0c;那世界上就不会缺热点&#xff0c;追热点应该是每个运营er的必备技能&#xff0c;但是市面上的热点层出不穷&#xff0c;什么样的热点才值得追呢&#xff1f;接下来媒介盒子就和大家聊聊&#xff1a;判断热点值不值得追的三大要素。 一、 事件属性…

竞赛选题 题目:基于深度学习的中文对话问答机器人

文章目录 0 简介1 项目架构2 项目的主要过程2.1 数据清洗、预处理2.2 分桶2.3 训练 3 项目的整体结构4 重要的API4.1 LSTM cells部分&#xff1a;4.2 损失函数&#xff1a;4.3 搭建seq2seq框架&#xff1a;4.4 测试部分&#xff1a;4.5 评价NLP测试效果&#xff1a;4.6 梯度截断…

视图层与模板层

视图层 1 视图函数 一个视图函数&#xff0c;简称视图&#xff0c;是一个简单的Python 函数&#xff0c;它接受Web请求并且返回Web响应。响应可以是一张网页的HTML内容&#xff0c;一个重定向&#xff0c;一个404错误&#xff0c;一个XML文档&#xff0c;或者一张图片. . . 是…