【长文干货】Python可视化教程

文章目录

    • 数据介绍
    • Matplotlib
      • 散点图
      • 折线图
      • 柱形图
      • 直方图
    • Seaborn
      • 散点图
      • 折线图
      • 柱形图
      • 直方图
    • Bokeh
      • 散点图
      • 折线
      • 条形图
      • 交互式
    • Plotly
      • 基本
      • 组合优化:定制化下拉菜单
    • 总结

数据介绍

在这个小费数据集中,我们记录了20世纪90年代初期餐厅顾客在两个半月内给出的小费情况。数据集包含了total_bill(总账单金额)、tip(小费金额)、sex(性别)、smoker(是否吸烟)、day(就餐日期)、time(就餐时间)、size(就餐人数)等六列信息。

数据下载:

链接: https://pan.baidu.com/s/1gnxI3CM7EVqCAzAGCbtSrg 提取码: 7it9 

读取数据:

import pandas as pd# 读取数据
data = pd.read_csv("tips.csv")# 展示前10行
display(data.head(10))

如下所示:
在这里插入图片描述

Matplotlib

Matplotlib是一个强大而灵活的低级数据可视化库,它建立在NumPy数组上。它提供了各种图形,如散点图、折线图、柱形图等。

要安装Matplotlib,可以使用以下命令:

pip install matplotlib

散点图

散点图用于观察变量之间的关系,可以使用Matplotlib的scatter()方法进行绘制。

import pandas as pd
import matplotlib.pyplot as plt# 数据
data = pd.read_csv("tips.csv")# 绘制天和小票关系
plt.scatter(data['day'], data['tip'])# 添加标题
plt.title("Scatter Plot")# 添加横纵坐标
plt.xlabel('Day')
plt.ylabel('Tip')plt.show()

如下所示:
在这里插入图片描述

如果想要增添颜色和调整点的大小,可以通过scatter()函数的c和s参数来实现。此外,colorbar()方法可用于显示颜色条。

折线图

折线图用于表示两个变量在不同轴上的关系,使用Matplotlib的plot()函数进行绘制。

import pandas as pd
import matplotlib.pyplot as plt# 读取数据
data = pd.read_csv("tips.csv")# 绘制小票和大小关系
plt.plot(data['tip'])
plt.plot(data['size'])#添加标题
plt.title("Scatter Plot")# 添加横纵坐标
plt.xlabel('Day')
plt.ylabel('Tip')plt.show()

如下:
在这里插入图片描述

柱形图

柱形图用于以矩形条的长度和高度表示数据类别。可以使用Matplotlib的bar()方法创建柱形图。


import pandas as pd
import matplotlib.pyplot as pltdata = pd.read_csv("tips.csv")plt.bar(data['day'], data['tip'])plt.title("Bar Chart")plt.xlabel('Day')
plt.ylabel('Tip')# Adding the legends
plt.show()

如下:
在这里插入图片描述

直方图

直方图用于以组的形式表示数据,可以使用Matplotlib的hist()函数进行绘制。

import pandas as pd
import matplotlib.pyplot as pltdata = pd.read_csv("tips.csv")
plt.hist(data['total_bill'])plt.title("Histogram")
plt.show()

如下:
在这里插入图片描述

Seaborn

Seaborn是建立在Matplotlib之上的高级接口,提供了漂亮的设计风格和调色板,使得绘制更具吸引力的图表变得简单。

要安装Seaborn,可以使用以下命令:

pip install seaborn

Seaborn的scatterplot()方法用于绘制散点图。

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pddata = pd.read_csv("tips.csv")# 绘制天和小费关系的散点图
sns.scatterplot(x='day', y='tip', data=data)plt.show()

如下:
在这里插入图片描述

散点图

与Matplotlib不同的是,在Seaborn中,使用hue参数可以轻松地按性别对每个点进行着色。

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pddata = pd.read_csv("tips.csv")# 根据性别绘制天和小费关系的散点图
sns.scatterplot(x='day', y='tip', data=data, hue='sex')plt.show()

如下:
在这里插入图片描述
你会发现,在使用 Matplotlib 时,如果你想根据性别给这个图的每个点着色,那会很困难。但是在散点图中,它可以在色调参数的帮助下完成。

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pddata = pd.read_csv("tips.csv")sns.scatterplot(x='day', y='tip', data=data,hue='sex')
plt.show()

如下:
在这里插入图片描述

折线图

Seaborn的lineplot()方法用于绘制折线图。

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pddata = pd.read_csv("tips.csv")sns.lineplot(x='day', y='tip', data=data)
plt.show()

如下:
在这里插入图片描述

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pddata = pd.read_csv("tips.csv")# 去除一个总额度列再绘制
sns.lineplot(data=data.drop(['total_bill'], axis=1))
plt.show()

如下:
在这里插入图片描述

柱形图

Seaborn的barplot()方法用于绘制柱形图。

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pddata = pd.read_csv("tips.csv")sns.barplot(x='day',y='tip', data=data, hue='sex')plt.show()

如下:
在这里插入图片描述

直方图

Seaborn 中的直方图可以使用 histplot() 函数绘制。

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pddata = pd.read_csv("tips.csv")sns.histplot(x='total_bill', data=data, kde=True, hue='sex')plt.show()

如下:
在这里插入图片描述
在使用Seaborn时,相比于Matplotlib,我们可以更轻松地自定义图表。而且,Seaborn是基于Matplotlib构建的,因此在使用Seaborn时仍然可以利用Matplotlib的自定义函数。

Bokeh

Bokeh以其交互式图表而著称,使用HTML和JavaScript渲染图形,提供了优雅、简洁且高度交互性的现代图形。
在这里插入图片描述

要安装Bokeh,可以使用以下命令:

pip install bokeh

散点图

Bokeh的scatter()方法用于绘制散点图。

from bokeh.plotting import figure, output_file, show
from bokeh.palettes import magma
import pandas as pd#初始化
graph = figure(title = "Bokeh Scatter Graph")# 读取
data = pd.read_csv("tips.csv")color = magma(256)# 绘制
graph.scatter(data['total_bill'], data['tip'], color=color)# 显示
show(graph)

如下:
在这里插入图片描述

折线

from bokeh.plotting import figure, output_file, show
import pandas as pdgraph = figure(title = "Bokeh Bar Chart")data = pd.read_csv("tips.csv")# tip column
df = data['tip'].value_counts()# 绘制
graph.line(df, data['tip'])#展示
show(graph)

如下:
在这里插入图片描述

条形图

Bokeh中的条形图可以使用vbar()方法创建。

from bokeh.plotting import figure, output_file, show
import pandas as pdgraph = figure(title = "Bokeh Bar Chart")data = pd.read_csv("tips.csv")graph.vbar(data['total_bill'], top=data['tip'])show(graph)

如下:
在这里插入图片描述

交互式

Bokeh提供了交互式图表的功能,可以使用GUI元素如按钮、滑块、复选框等。

from bokeh.plotting import figure, output_file, show
import pandas as pd# 初始化
graph = figure(title = "Bokeh Bar Chart")# 数据读取
data = pd.read_csv("tips.csv")# 绘制
graph.vbar(data['total_bill'], top=data['tip'], legend_label = "Bill VS Tips", color='green')graph.vbar(data['tip'], top=data['size'], legend_label = "Tips VS Size", color='red')graph.legend.click_policy = "hide"# 展示
show(graph)

如下:

在这里插入图片描述

例如:

from bokeh.io import show
from bokeh.models import CustomJS, Sliderslider = Slider(start=1, end=20, value=1, step=2, title="Slider")slider.js_on_change("value", CustomJS(code="""console.log('slider: value=' + this.value, this.toString())
"""))show(slider)

如下:
在这里插入图片描述

Plotly

Plotly是一个交互式可视化库,提供基于Web的图表,可以用于创建漂亮的图表和仪表板。

要安装Plotly,可以使用以下命令:

pip install plotly

基本

使用Plotly Express库中的scatter()方法绘制散点图。


import plotly.express as px
import pandas as pddata = pd.read_csv("tips.csv")fig = px.scatter(data, x="day", y="tip", color='sex')# showing the plot
fig.show()

如下:
在这里插入图片描述
使用Plotly Express库中的line()方法绘制折线图。

import plotly.express as px
import pandas as pddata = pd.read_csv("tips.csv")fig = px.line(data, y='tip', color='sex')fig.show()

如下:
在这里插入图片描述
使用Plotly Express库中的bar()方法绘制柱形图。

import plotly.express as px
import pandas as pddata = pd.read_csv("tips.csv")fig = px.bar(data, x='day', y='tip', color='sex')fig.show()

如下:
在这里插入图片描述
使用Plotly Express库中的histogram()方法绘制直方图。


import plotly.express as px
import pandas as pd# reading the database
data = pd.read_csv("tips.csv")# plotting the scatter chart
fig = px.histogram(data, x='total_bill', color='sex')# showing the plot
fig.show()

如下:
在这里插入图片描述

组合优化:定制化下拉菜单

在数据可视化中,展示图表不仅需要清晰的数据呈现,还需要用户友好的交互体验。本文将介绍如何通过使用 Plotly 中的 updatemenus 功能,为图表添加定制化下拉菜单,让用户能够灵活切换图表类型。

# 导入必要的库
import plotly.graph_objects as go
import pandas as pd# 读取数据
data = pd.read_csv("tips.csv")# 创建初始散点图
plot = go.Figure(data=[go.Scatter(x=data['day'],y=data['tip'],mode='markers',)
])# 定义下拉菜单选项
menu_options = [dict(args=["type", "scatter"],label="散点图",method="restyle"),dict(args=["type", "bar"],label="柱状图",method="restyle")
]# 添加下拉菜单
plot.update_layout(updatemenus=[dict(buttons=menu_options,direction="down",),]
)# 展示图表
plot.show()

如下所示:
在这里插入图片描述
通过这个简单的示例,你可以在图表上方看到一个下拉菜单,用于在散点图和柱状图之间切换。这种交互方式使得用户能够更直观地探索数据。

同样地,我们可以应用相同的思想来优化时间序列数据的展示:

# 创建初始折线图
plot = go.Figure(data=[go.Scatter(y=data['tip'],mode='lines',)
])# 定义时间序列下拉菜单选项
time_menu_options = [dict(count=1,step="day",stepmode="backward")
]# 更新布局,添加时间序列下拉菜单
plot.update_layout(xaxis=dict(rangeselector=dict(buttons=time_menu_options),rangeslider=dict(visible=True),)
)# 展示图表
plot.show()

如下:
在这里插入图片描述
这样,你就能够以更有层次感的方式呈现时间序列数据。

总结

通过本文学习,你不仅了解了如何使用 Python 中不同的绘图库(Matplotlib、Seaborn、Bokeh 和 Plotly)来展示提示数据集,还掌握了如何通过 Plotly 的交互功能为图表添加个性化的下拉菜单。每个绘图库都有其独特的优势,根据任务需求选择合适的库,既能提高效率又能提供更好的用户体验。希望你在数据可视化的旅程中能够更得心应手!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/231315.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

贪心 53. 最大子序和 122.买卖股票的最佳时机 II

53. 最大子序和 题目: 给定一个数组,有正有负,找出一个连续子序列的总和最大(子数组最少一个) 暴力思路: 双层for循环,记录每一次可能的子序列的总和,初始为整数最小值&#xff…

windows+deepin v23 linux 双系统 安装前后 与 删除后 的硬盘efi分区情况,deepin v23 beta2的一些体验

知乎版:https://zhuanlan.zhihu.com/p/669429404 windows下安装deepin v23 beta2 电脑8GB内存,一个256GB固态硬盘,已经安装windows11。 安装双系统前分区情况:主要包含 windows EFI分区 和 系统分区,并预留了64GB给d…

Python将Labelme的Json标注文件进行增、删、改、查

Python将Labelme的Json标注文件进行增、删、改、查 前言前提条件相关介绍实验环境Json标注文件的增、删、改、查增代码实现输出结果 删代码实现输出结果 改代码实现输出结果 查代码实现输出结果 前言 由于本人水平有限,难免出现错漏,敬请批评改正。更多精…

【数值计算方法(黄明游)】常微分方程初值问题的数值积分法:欧拉方法(向后Euler)【理论到程序】

文章目录 一、数值积分法1. 一般步骤2. 数值方法 二、欧拉方法(Euler Method)1. 向前欧拉法(前向欧拉法)2. 向后欧拉法(后向欧拉法)a. 基本理论b. 算法实现 常微分方程初值问题的数值积分法是一种通过数值方…

uniapp打包ios有时间 uniapp打包次数

我们经常用的解决方案有,分包,将图片上传到服务器上,减少插件引入。但是还有一个方案好多刚入门uniapp的人都给忽略了,就是在源码视图中配置,开启分包优化。 1.分包 目前微信小程序可以分8个包,每个包的最大存储是2M,也就是说你文件总体的大小不能超过16M,每个包的大…

智能优化算法应用:基于闪电搜索算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于闪电搜索算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于闪电搜索算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.闪电搜索算法4.实验参数设定5.算法结果6.参考…

Unity中Shader变体优化

文章目录 前言一、在Unity中查看变体个数,以及有哪些变体二、若使用预定义的变体太多,我们只使用其中的几个变体,我们该怎么做优化一:可以直接定义需要的那个变体优化二:使用 skip_variants 剔除不需要的变体 三、变体…

创建Asp.net MVC项目Ajax实现视图页面数据与后端Json传值显示

简述回顾 继上篇文章创建的mvc传值这里说明一下Json传值。在mvc框架中,不可避免地会遇到前台传值到后台,前台接收后台的值的情况(前台指view,后台指controller),有时只需要从控制器中返回一个处理的结果&a…

开源英伟达 Vulkan 驱动程序 NVK 达到 Vulkan 1.0 标准

导读Collabora今天宣布,其开源NVK图形驱动程序Mesa现已正式符合英伟达图灵硬件上的Vulkan 1.0图形应用程序接口。 “这是任何Nouveau驱动程序首次在任何API上获得Khronos一致性徽章”。Collabora表示,NVK获得Vulkan官方认证是Nouveau图形驱动程序首次在…

人工智能对人脑的探索研究!物理限制推动类脑人工智能的发展

原创 | 文 BFT机器人 在一项开创性的研究中,剑桥科学家采用了一种新颖的人工智能方法,展示了物理约束如何深刻影响了人工智能系统的发展。 这项研究会让人想起人脑的发育和能力限制,为复杂神经系统的进化提供了新的见解。通过整合这些限制&a…

leetcode刷题详解十二

回文子串 首先回文子串问题涉及到的都是单个字符串,所以如果是单个字符串用动态规划的基本都是二维的,i-j 其次,回文字符串,都是从后往前遍历的,这个要记住。因为dp的状态转移方程特性决定的 647. 回文子串 还是用…

sizeof 和 strlen的对比及笔试题目

目录 题目1: 题目2: 题目3: 题目4: 题目5: 题目6: 二维数组题(重点): 上述题目总结: 若想了解其他的字符函数和字符串函数请移步:深入理解…