智能优化算法应用:基于群居蜘蛛算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于群居蜘蛛算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于群居蜘蛛算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.群居蜘蛛算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用群居蜘蛛算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.群居蜘蛛算法

群居蜘蛛算法原理请参考:https://blog.csdn.net/u011835903/article/details/108406547
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

群居蜘蛛算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明群居蜘蛛算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/231952.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

记录创建粒子的轻量级JavaScript库——particles.js(可用于登录等背景显示)

文章目录 前言一、下载particles.js二、引入particles.js并使用三、配置数据说明如有启发,可点赞收藏哟~ 前言 本文记录使用创建粒子的轻量级JavaScript库 particles.js 可用于登录等背景显示 一、下载particles.js 先下载particles.js库,放在项目libs…

【解决】使用strApi调登录接口使用jwt时,报类型“AxiosResponse<any, any>”上不存在属性“jwt”。ts any

类型“AxiosResponse<any, any>”上不存在属性“jwt”。ts(2339) any 解决办法&#xff1a; 使用类型断言(loginData as any)?.jwt 即可

Alignment of HMM, CTC and RNN-T,对齐方式详解——语音信号处理学习(三)(选修二)

参考文献&#xff1a; Speech Recognition (option) - Alignment of HMM, CTC and RNN-T哔哩哔哩bilibili 2020 年 3月 新番 李宏毅 人类语言处理 独家笔记 Alignment - 7 - 知乎 (zhihu.com) 本次省略所有引用论文 目录 一、E2E 模型和 CTC、RNN-T 的区别 E2E 模型的思路 C…

Linux(11):Linux 账号管理与 ACL 权限设定

Linux 的账号与群组 每个登入的使用者至少都会取得两个 ID&#xff0c;一个是使用者 ID(User ID &#xff0c;简称UID)、一个是群组ID (Group ID &#xff0c;简称GID)。 Linux系统上面的用户如果需要登入主机以取得 shell 的环境来工作时&#xff0c;他需要如何进行呢? 首先…

前端:实现二级菜单(点击实现二级菜单展开)

效果 代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" content"widthdevice-width, i…

【HTML】VScode不打开浏览器实时预览html

1. 问题描述 预览HTML时&#xff0c;不想打开浏览器&#xff0c;想在VScode中直接实时预览 2. 解决方案 下载Microsoft官方的Live Preview 点击预览按钮即可预览

Stability AI 新发布SDXL Turbo:一款实时文本到图像生成模型

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

hugging face下载dataset时候出现You must be authenticated to access it.问题解决

Cannot access gated repo for url https://huggingface.co/tiiuae/falcon-180B/resolve/main/tokenizer_config.json. Repo model tiiuae/falcon-180B is gated. You must be authenticated to access it. 参考https://huggingface.co/docs/huggingface_hub/guides/download …

基于ora2pg迁移Oracle19C到postgreSQL14

&#x1f4e2;&#x1f4e2;&#x1f4e2;&#x1f4e3;&#x1f4e3;&#x1f4e3; 哈喽&#xff01;大家好&#xff0c;我是【IT邦德】&#xff0c;江湖人称jeames007&#xff0c;10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】&#xff01;&#x1f61c;&am…

7Docker搭建es和kibana

一、安装es 1.拉取镜像 sudo docker pull elasticsearch:7.12.0 elasticsearch:7.12.0:我安装的版本是7.12.0&#xff0c;可以根据实际的情况安装 创建docker容器挂在的目录&#xff1a; sudo mkdir -p /opt/elasticsearch/config sudo mkdir -p /opt/elasticsearch/data s…

WordPress 粘贴图片上传插件

找了很久&#xff0c;发现一款不错的插件&#xff0c;允许我们直接粘贴图片文件并且上传到媒体库。以前的插件上传后媒体库不会显示&#xff0c;这个要显示。 启用后编辑器会有一个图标&#xff0c;如果开启&#xff0c;那么久可以截图后直接粘贴了。 学习资料源代码&#xf…

磁环电感参数计算

磁环电感参数计算 1.什么是电感磁饱和2.电感饱和的原因3.电感饱和带来的影响3.1 感应电动势变化3.2 电感值变化3.3 功率损耗增加3.4 系统稳定性受到影响4.饱和电流计算最近在做DC/DC电源,电感是用磁环绕制的,所以关注一下磁环绕制电感参数的计算,学习学习。 某款磁环参数。 …