大数据HCIE成神之路之数学(4)——最优化实验

最优化实验

    • 1.1 最小二乘法实现
      • 1.1.1 算法介绍
      • 1.1.2 代码实现
    • 1.2 梯度下降法实现
      • 1.2.1 算法介绍
      • 1.2.2 代码实现
    • 1.3 拉格朗日乘子法
      • 1.3.1 实验
      • 1.3.2 实验操作步骤

1.1 最小二乘法实现

1.1.1 算法介绍

最小二乘法(Least Square Method),做为分类回归算法的基础,有着悠久的历史。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的参数,并使得预测的数据与实际数据之间误差的平方和为最小。

通俗地解释:最小二乘法是一种数学方法,它可以帮助我们找到一条直线,使得这条直线与一些散点数据的距离之和最小。这就像是在一堆点中找到一条最合适的线,使得这条线与所有点的距离之和最小。

1.1.2 代码实现

代码输入:

import numpy as np  
import scipy as sp  
import pylab as pl  
from scipy.optimize import leastsq  # 引入最小二乘函数  n = 9  # 多项式次数  # 定义目标函数:  
def real_func(x):  #目标函数:sin(2*pi*x)return np.sin(2 * np.pi * x)  # 定义多项式函数,用多项式去拟合数据:  
def fit_func(p, x):  f = np.poly1d(p)  # 构造一个多项式return f(x)  # 定义残差函数,残差函数值为多项式拟合结果与真实值的差值:  
def residuals_func(p, y, x):  ret = fit_func(p, x) - y  # 计算残差return ret  x = np.linspace(0, 1, 9)  # 随机选择9个点作为x  
x_points = np.linspace(0, 1, 1000)  # 画图时需要的连续点  
y0 = real_func(x)  # 目标函数  
y1 = [np.random.normal(0, 0.1) + y for y in y0]  # 在目标函数上添加符合正态分布噪声后的函数  
p_init = np.random.randn(n)  # 随机初始化多项式参数  # 调用scipy.optimize中的leastsq函数,通过最小化误差的平方和来寻找最佳的匹配函数
#func是一个残差函数,x0是计算的初始参数值,把残差函数中除了初始化以外的参数打包到args中
plsq = leastsq(func=residuals_func, x0=p_init, args=(y1, x))  print('Fitting Parameters: ', plsq[0])  # 输出拟合参数  # 绘制图像
pl.plot(x_points, real_func(x_points), label='real')  # 绘制真实函数
pl.plot(x_points, fit_func(plsq[0], x_points), label='fitted curve')  # 绘制拟合函数
pl.plot(x, y1, 'bo', label='with noise')  # 绘制带有噪声的数据点
pl.legend()  # 显示图例
pl.show()  # 显示图像

结果输出:

Fitting Parameters:   [-4.43705803e+03  1.82907420e+04 -3.09056669e+04  2.74461105e+04-1.36135812e+04  3.70056478e+03 -5.14095149e+02  3.29570051e+01-5.85714263e-02]

可视化图像:
在这里插入图片描述
解释1:

# 定义多项式函数,用多项式去拟合数据:  
def fit_func(p, x):  f = np.poly1d(p)  # 构造一个多项式return f(x)  

这个函数 fit_func 的作用是计算多项式的值。在这个函数中,np.poly1d(p) 用于构造一个多项式。p 是一个一维数组,代表多项式的系数,从高次项到低次项。例如,如果 p=[1,2,3],那么 np.poly1d(p) 就会构造一个多项式 f(x) = 1*x^2 + 2*x + 3。然后,f(x) 会计算这个多项式在 x 处的值。

举个例子,如果我们有一个二次多项式 f(x) = 2*x^2 + 3*x + 4,我们可以用 p=[2,3,4] 来表示。如果我们想要计算 x=5 时这个多项式的值,我们可以调用 fit_func([2,3,4], 5),这将返回 2*5^2 + 3*5 + 4 = 69。所以,fit_func([2,3,4], 5) 的返回值就是 69,这就是这个函数的作用。

解释2:

plsq = leastsq(func=residuals_func, x0=p_init, args=(y1, x)) 

leastsq 是 SciPy 库中的一个函数,用于执行最小二乘拟合。最小二乘拟合是一种数学优化技术,它通过最小化预测值和实际值之间的平方差来找到数据的最佳函数匹配。

在这段代码中,leastsq 函数有三个参数:

  • func 是计算误差的函数,这里使用的是 residuals_func,它计算的是拟合函数和实际数据之间的差值。
  • x0 是待优化的参数的初始猜测值,这里使用的是 p_init,它是一个随机初始化的多项式参数。代码上面有 p_init = np.random.randn(n) ,n=9,所以p_init将会有9个数的数组。 p_init 其实就是 np.poly1d(p) 函数的参数 p
  • args 是传递给 func 的额外参数,在这里是 (y1, x),其中 y1 是带有噪声的目标函数值,x 是自变量的值。

leastsq 函数会返回两个值,但在这里我们只关心第一个值,即最优参数值,所以我们用 plsq 来接收这个值。

举个例子,假设我们有一组数据 x=[1,2,3,4,5]y=[2.2, 2.8, 3.6, 4.5, 5.1],我们想要找到一个最佳的线性函数 y=ax+b 来拟合这组数据。我们可以先随机初始化 ab 的值,然后调用 leastsq 函数来找到最佳的 ab 值。这就是这段代码的作用,其实上面的args里的y1相当于这个例子里的y,args里的x相当于这个例子的x。

1.2 梯度下降法实现

1.2.1 算法介绍

梯度下降法(gradient descent),又名最速下降法,是求解无约束最优化问题最常用的方法,它是一种迭代方法,每一步主要的操作是求解目标函数的梯度向量,将当前位置的负梯度方向作为搜索方向(因为在该方向上目标函数下降最快,这也是最速下降法名称的由来)。

梯度下降法特点:越接近目标值,步长越小,下降速度越慢。

1.2.2 代码实现

代码输入:

训练集 (x,y) 共5个样本,每个样本点有3个分量 (x0,x1,x2)

# 定义数据集
x = [(1, 0., 3), (1, 1., 3), (1, 2., 3), (1, 3., 2), (1, 4., 4)]  
# 输入数据
y = [95.364, 97.217205, 75.195834, 60.105519, 49.342380]  # 对应的真实值  
epsilon = 0.0001  # 迭代阀值,当两次迭代损失函数之差小于该阀值时停止迭代  
alpha = 0.01  # 学习率
diff = [0, 0]  # 初始化残差
max_itor = 1000  # 最大迭代次数
error1 = 0  # 初始化误差,表示后一次误差,需减去前一次误差看是否在迭代阈值之内,之内则停止迭代
error0 = 0  # 初始化误差,表示前一次误差
cnt = 0  # 初始化迭代计数
m = len(x)  # 数据集大小,m=5# 初始化参数  
theta0 = 0  
theta1 = 0  
theta2 = 0  # 开始迭代
while True:  cnt += 1  # 迭代计数加1# 参数迭代计算(m=5)for i in range(m):  # 拟合函数为 y = theta0 * x[0] + theta1 * x[1] +theta2 * x[2]  # 计算残差,即拟合函数值-真实值  diff[0] = (theta0 * x[i][0] 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/234043.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【UE】简单的警觉系统

效果 步骤 1. 新建一个空白工程,添加第三人称游戏内容包 2. 打开第三人称角色蓝图“BP_ThirdPersonCharacter” 选中弹簧臂组件,将目标臂长度设置为600,z轴方向的插槽偏移设置为100 3. 将“BP_ThirdPersonCharacter”移入场景,该…

Glove学习笔记

global vectors for word representation B站学习视频 1、LSA与word2vec 我们用我们的见解,构建一个新的模型,Glove,全局向量的词表示,因为这个模型捕捉到全局预料的统计信息。 LSA:全局矩阵分解word2vec:局部上下文…

Flat Ads将携6亿独家流量亮相白鲸GTC2023,在7V01展台等你

一年一度的白鲸出海全球流量大会GTC重磅来袭!今年GTC出海展区全面升级,规模扩增至15000平方米,覆盖游戏、应用、技术及品牌出海等热门行业,预计将迎来累计超30000名跨境出海相关从业者莅临参观。 Flat Ads受邀设展,现场互动100%中奖 从出海到全球化,中国互联网企业走向海外寻…

深度学习大数据物流平台 python 计算机竞赛

文章目录 0 前言1 课题背景2 物流大数据平台的架构与设计3 智能车货匹配推荐算法的实现**1\. 问题陈述****2\. 算法模型**3\. 模型构建总览 **4 司机标签体系的搭建及算法****1\. 冷启动**2\. LSTM多标签模型算法 5 货运价格预测6 总结7 部分核心代码8 最后 0 前言 &#x1f5…

[个人笔记] Zabbix实现Webhook推送markdown文本

系统工程 - 运维篇 第四章 Zabbix实现Webhook推送markdown文本 系统工程 - 运维篇系列文章回顾Zabbix实现Webhook推送markdown文本前言实施步骤 Zabbix新增报警媒介类型Zabbix给用户新增报警媒介Zabbix修改动作的执行操作和恢复操作验证&测试 参考来源 系列文章回顾 第一章…

就是说,还有行政人不知道这个神器吗

救命,还有行政人不知道它的吗??再不用真的亏大了啊!!用它写东西再也不用愁了 这东西写啥都可以,只有输入需求马上就写好了啊,什么工作总结,活动策划方案,会议纪要啥啥都…

Vue3生命周期函数(简述题)

1.图示 2.说明 3.补充 1.在vue3组合式API中,我们需要将生命周期函数先导入,然后才能使用。 import {onMounted} from vue2.beforeCreate和created被setup()方法所代替

“逆风飞翔·事实孤儿同行计划”成长陪伴主题区域陪伴培训会

为推进各机构更好地开展事实孤儿成长陪伴工作,促进事实孤儿成长陪伴实施成效,搭建各机构间事实孤儿成长陪伴方式方法交流平台。11月26日,在中国乡村发展基金会、中国民生银行的支持下,由湖南省大爱无疆青少年公益发展中心主办&…

小程序:让你轻松解决生活琐事!

随着科技的发展,小程序已经逐渐深入人们的生活,无论是去水印等功能类的小工具、打发时间的休闲小游戏类的小程序,还是提供视频和音乐的服务类的小程序等等,都在我们的生活之中占据了一席之地。 为什么越来越多的人选择了小程序呢…

PHP:js中怎么使用PHP变量,php变量为数组时的处理

方法一&#xff1a;使用内嵌 PHP 脚本标记 1、简单的拼接 使用内嵌的 PHP 脚本标记 <?php ?> 将 PHP 变量 $phpVariable 的值嵌入到 JavaScript 代码中。 <?php $phpVariable "Hello, World!"; ?><script> // 将 PHP 变量的值传递给 JavaS…

【产品功能】dolphinscheduler怎么修改,实现超时就结束掉当前工作流

超时就结束工作流 代码 代码 MasterExecThread类 的 runProcess方法 里面有超时告警&#xff0c;原本里面只有超时告警的&#xff0c;这时候我只要加上海豚自己写好的结束任务的方法endProcess&#xff08;&#xff09;方法

分享86个简历竞聘PPT,总有一款适合您

分享86个简历竞聘PPT&#xff0c;总有一款适合您 86个简历竞聘PPT下载链接&#xff1a;https://pan.baidu.com/s/130iX0EIH6J-PFzb6HcntcQ?pwd8888 提取码&#xff1a;8888 Python采集代码下载链接&#xff1a;采集代码.zip - 蓝奏云 学习知识费力气&#xff0c;收集整…