ruoyi+Hadoop+hbase实现大数据存储查询

前言

有个现实的需求,数据量可能在100亿条左右。现有的数据库是SQL Server,随着采集的数据不断的填充,查询的效率越来越慢(现有的SQL Server查询已经需要数十秒钟的时间),看看有没有优化的方案。

考虑过SQL Server加索引、分区表、分库分表等方案,但数据量增长太快,还是很快就会遇到瓶颈,因此需要更优化的技术。在众多的NOSQL和大数据技术之下,针对此场景,主要考虑了两种方案:

  1. MongoDB:json文档型数据库,可以通过集群拓展。但更适合列比较复杂的场景快速查询。

  2. Hadoop:大数据领域的瑞士军刀,周边有很多相配套的工具可以使用,后期拓展性较强。

因为此需求只是简单的根据编码找到对应的卷号,因此最终选择Hadoop实现。

部署Hadoop

直接去官方下载,https://hadoop.apache.org/。

要注意版本的问题,版本不匹配会带来很多麻烦。我这里选择的是hadoop 3.3.4的版本。

步骤:

  1. 找到hadoop对应版本的winutils.exe、hadoop.dll文件

复制hadoop 3.3.4版本对应的winutils.exe和hadoop.dll文件到hadoop的bin文件夹下面。同步复制这两个文件,到C:\Windows\System32下面。

这两个文件可以去github上面搜索,一定要注意跟你的hadoop版本一致,否则不通过。

  1. 文件配置(下面的配置文件都在 hadoop 3.3.4/etc/hadoop 文件夹内)

a). hadoop-env.cmd文件配置

set JAVA_HOME=C:\Users\Administrator\.jdks\corretto-11.0.21

注意:这里的JAVA_HOME是指向的openjdk(开源)的版本,oracle的jdk用不起来。必须要安装openjdk。
b). core-site.xml

<configuration><property> <name>fs.defaultFS</name> <value>hdfs://localhost:9000</value> </property>
</configuration>

c). hdfs-site.xml

<configuration><property> <name>dfs.replication</name> <value>1</value> </property> <property> <name>dfs.namenode.name.dir</name> <value>/hadoop-3.3.4/data/namenode</value> </property> <property> <name>dfs.datanode.data.dir</name> <value>/hadoop-3.3.4/data/datanode</value> </property> 
</configuration>

d). yarn-site.xml

<configuration><property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> <property> <name>yarn.nodemanager.auservices.mapreduce.shuffle.class</name> <value>org.apache.hadoop.mapred.ShuffleHandler</value> </property> 
</configuration>
  1. 配置环境变量
    在这里插入图片描述
    再添加到Path,%HADOOP_HOME%\bin
    可以在控制台输入:hadoop version,验证是否安装配置正确
    在这里插入图片描述
    最后在控制台输入:start-all.cmd ,启动Hadoop。没有错误信息,表示Hadoop启动成功。
    在这里插入图片描述

部署Hbase

安装Hbase可以到官网下载:https://hbase.apache.org/。

同样要非常关注版本的问题,因为我上面选择的Hadoop是3.3.4,与之配套的Hbase的版本是2.5.5。

步骤:

  1. 将之前下载的winutils.exe和hadoop.dll文件拷贝到 hbase的bin目录下,比如我的:E:\hbase-2.5.5\bin。

  2. 文件配置

在hbase的conf目录下,打开hbase-site.xml文件,添加如下内容:

<configuration><property><name>hbase.rootdir</name><value>file:///E:/hbase-2.5.5/root</value></property><property><name>hbase.cluster.distributed</name><value>false</value></property><property><name>hbase.zookeeper.quorum</name><value>127.0.0.1</value></property><property><name>hbase.tmp.dir</name><value>./tmp</value></property><property><name>hbase.unsafe.stream.capability.enforce</name><value>false</value></property>
</configuration>

按照上述的配置说明,在hbase目录下,添加root和tmp文件夹。

3.配置环境变量(此处省略,参考上面的hadoop的截图)

找到hbase的bin目录下的start-hbase.cmd文件,双击启动。

hbase启动完成后的界面:
在这里插入图片描述

基于若依进行二次开发

直接引用ruoyi的项目,在里面添加功能,当然首先需要导入相应的jar包(这些jar包在hadoop和hbase里面都有,直接引用即可)。
在这里插入图片描述
当然下面还有引用的jar包,这里就不截图了,供参考。
在这里插入图片描述
该项目基于SpringBoot框架,实现了基于HDFS、hbase的基础功能。

控制器代码如下:

package com.ruoyi.web.controller.roll;import com.ruoyi.common.core.controller.BaseController;
import com.ruoyi.common.core.domain.R;
import com.ruoyi.common.core.domain.entity.SysRole;
import com.ruoyi.common.core.page.TableDataInfo;
import com.ruoyi.common.roll.RollEntity;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.client.coprocessor.AggregationClient;
import org.apache.hadoop.hbase.client.coprocessor.LongColumnInterpreter;
import org.apache.hadoop.hbase.filter.*;
import org.apache.shiro.authz.annotation.RequiresPermissions;
import org.springframework.stereotype.Controller;
import org.springframework.util.StopWatch;
import org.springframework.web.bind.annotation.*;import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.ByteArrayOutputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.net.MalformedURLException;
import java.net.URL;
import java.util.ArrayList;
import java.util.List;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.FsUrlStreamHandlerFactory;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.CompareOperator;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.hadoop.hbase.HTableDescriptor;
import org.apache.hadoop.hbase.MasterNotRunningException;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.ZooKeeperConnectionException;
import org.apache.hadoop.hbase.exceptions.DeserializationException;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.mapreduce.Job;@Controller
@RequestMapping("/roll")
public class RollController extends BaseController {private String prefix = "/roll";/*** 新增角色*/@GetMapping("/add")public String add() {
//        long count = rowCountByCoprocessor("mytb");
//        System.out.println("总记录数->>>"+count + "");return prefix + "/add";}@PostMapping("/list")@ResponseBodypublic TableDataInfo list(String inputEPC) {
//        startPage();
//        List<SysRole> list = roleService.selectRoleList(role);//String epc = "E280117020000333BF040B34";//String epc = "E280119120006618A51D032D"; //查询的EPCString epc = inputEPC;String tableName = "mytb";String columnFamily = "mycf";//        create(tableName, columnFamily);
//        insert(tableName,columnFamily);long startTime = System.currentTimeMillis();//E280119120006BEEA4E5032String reVal = query(tableName, columnFamily, epc);long endTime = System.currentTimeMillis();System.out.println("卷号查询时间为:" + (endTime - startTime) + "ms");RollEntity model = new RollEntity();model.epc = epc;model.rollName = reVal;model.searchTime = (endTime - startTime) + "ms";List<RollEntity> list = new ArrayList<>();list.add(model);return getDataTable(list);}// 创建表public static void create(String tableName, String columnFamily) {Configuration conf = HBaseConfiguration.create();conf.set("hbase.rootdir", "hdfs://localhost:9000/hbase");conf.set("hbase.zookeeper.quorum", "localhost");try {Connection conn = ConnectionFactory.createConnection(conf);if (conn.getAdmin().tableExists(TableName.valueOf(tableName))) {System.err.println("Table exists!");} else {HTableDescriptor tableDesc = new HTableDescriptor(TableName.valueOf(tableName));try {tableDesc.addFamily(new HColumnDescriptor(columnFamily));conn.getAdmin().createTable(tableDesc);System.err.println("Create Table SUCCESS!");} catch (IOException e) {// TODO Auto-generated catch blocke.printStackTrace();}}} catch (IOException e) {// TODO Auto-generated catch blocke.printStackTrace();}}// 插入数据public static void insert(String tableName, String columnFamily) {Configuration conf = HBaseConfiguration.create();conf.set("hbase.rootdir", "hdfs://localhost:9000/hbase");conf.set("hbase.zookeeper.quorum", "localhost");try {Connection conn = ConnectionFactory.createConnection(conf);TableName tn = TableName.valueOf(tableName);Table table = conn.getTable(tn);try {//                for (int i = 17742000; i <= 100000000; i++) {
//                    Put put = new Put(Bytes.toBytes("row" + i));
//                    put.addColumn(Bytes.toBytes(columnFamily), Bytes.toBytes("code"),
//                            Bytes.toBytes("E280119120006BEEA4E5032" + i));
//                    table.put(put);
//                }//                Put put = new Put(Bytes.toBytes("E280119120006618A51D032D"));
//                put.addColumn(Bytes.toBytes(columnFamily), Bytes.toBytes("code"),
//                            Bytes.toBytes("CQ-230308009"));
//                table.put(put);Put put = new Put(Bytes.toBytes("E280117020000333BF040B34"));put.addColumn(Bytes.toBytes(columnFamily), Bytes.toBytes("code"),Bytes.toBytes("CQ-230309002"));table.put(put);table.close();// 释放资源System.err.println("record insert SUCCESS!");} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();}} catch (IOException e) {// TODO Auto-generated catch blocke.printStackTrace();}}// 查询public static String query(String tableName, String columnFamily, String rowName) {String reVal = "";Configuration conf = HBaseConfiguration.create();conf.set("hbase.rootdir", "hdfs://localhost:9000/hbase");conf.set("hbase.zookeeper.quorum", "localhost");try {Connection conn = ConnectionFactory.createConnection(conf);TableName tn = TableName.valueOf(tableName);Table table = conn.getTable(tn);try {Get get = new Get(rowName.getBytes());Result r = table.get(get);for (Cell cell : r.rawCells()) {String family = new String(CellUtil.cloneFamily(cell));String qualifier = new String(CellUtil.cloneQualifier(cell));String value = new String(CellUtil.cloneValue(cell));System.out.println("列:" + family + ":" + qualifier + " 值:" + value);reVal = value;break;}} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {conn.close();}} catch (IOException e) {// TODO Auto-generated catch blocke.printStackTrace();}return reVal;}//过滤查询public static void queryFilter(String tableName, String columnFamily, String rowName, String value) {Configuration conf = HBaseConfiguration.create();conf.set("hbase.rootdir", "hdfs://localhost:9000/hbase");conf.set("hbase.zookeeper.quorum", "localhost");try {Connection conn = ConnectionFactory.createConnection(conf);TableName tn = TableName.valueOf(tableName);Table table = conn.getTable(tn);try {Scan scan = new Scan();Filter filter = new ValueFilter(CompareOperator.EQUAL, new BinaryComparator(Bytes.toBytes(value)));scan.setFilter(filter);ResultScanner rs = table.getScanner(scan);for (Result res : rs) {System.out.println(res);}} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();}} catch (IOException e) {// TODO Auto-generated catch blocke.printStackTrace();}}//读取HDFS文件private static void readHDFSFileContents() {InputStream is = null;OutputStream os = null;BufferedInputStream bufferInput = null;BufferedOutputStream bufferOutput = null;try {is = new URL("hdfs://127.0.0.1:9000/myHadoop/1.txt").openStream();bufferInput = new BufferedInputStream(is);// IOUtils.copyBytes(is, os, 4096,false);byte[] contents = new byte[1024];int bytesRead = 0;String strFileContents = "";while ((bytesRead = is.read(contents)) != -1) {strFileContents += new String(contents, 0, bytesRead);}System.out.println(strFileContents);} catch (MalformedURLException e) {// TODO Auto-generated catch blocke.printStackTrace();} catch (IOException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {// IOUtils.closeStream(is);}}//创建HDFS目录private static void createHDFSDirectory() {// TODO Auto-generated method stubtry {Configuration conf = new Configuration();conf.set("fs.defaultFS", "hdfs://127.0.0.1:9000");FileSystem fs = FileSystem.get(conf);boolean result = fs.mkdirs(new Path("/myHadoop"));System.out.println(result);} catch (Exception e) {e.printStackTrace();}}//查询Hbase有多少条记录public long rowCountByCoprocessor(String tablename){long count = 0;try {Configuration conf = HBaseConfiguration.create();conf.set("hbase.rootdir", "hdfs://localhost:9000/hbase");conf.set("hbase.zookeeper.quorum", "localhost");Connection connection = ConnectionFactory.createConnection(conf);//提前创建connection和confAdmin admin = connection.getAdmin();//admin.enableTable(TableName.valueOf("mytb"));TableName name=TableName.valueOf(tablename);//先disable表,添加协处理器后再enable表//admin.disableTable(name);HTableDescriptor descriptor = new HTableDescriptor(name); //admin.getTableDescriptor(name);//descriptor.setReadOnly(false);String coprocessorClass = "org.apache.hadoop.hbase.coprocessor.AggregateImplementation";if (! descriptor.hasCoprocessor(coprocessorClass)) {descriptor.addCoprocessor(coprocessorClass);}//admin.modifyTable(name, descriptor);//admin.enableTable(name);//计时StopWatch stopWatch = new StopWatch();stopWatch.start();Scan scan = new Scan();AggregationClient aggregationClient = new AggregationClient(conf);//System.out.println("RowCount: " + aggregationClient.rowCount(name, new LongColumnInterpreter(), scan));count = aggregationClient.rowCount(name, new LongColumnInterpreter(), scan);stopWatch.stop();System.out.println("统计耗时:" +stopWatch.getTotalTimeMillis());connection.close();} catch (Throwable e) {e.printStackTrace();}return count;}
}

最终效果

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/234775.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode Hot100 3.无重复字符的最长子串

题目&#xff1a; 给定一个字符串 s &#xff0c;请你找出其中不含有重复字符的 最长子串 的长度。 代码&#xff1a; class Solution {public int lengthOfLongestSubstring(String s) {char[] arr s.toCharArray(); // 转换成 char[] 加快效率&#xff08;忽略带来的空间…

Java——TreeSet用法

Java——TreeSet TreeSet 是 Java 中的一个有序集合类&#xff0c;它基于红黑树&#xff08;Red-Black Tree&#xff09;实现。 下面详细介绍 TreeSet 的用法和特点&#xff1a; 有序性&#xff1a;TreeSet 中的元素按照自然顺序或者通过自定义的比较器进行排序。它保证了元素…

【C++ Primer Plus学习记录】循环和文本输入

目录 1.使用原始的cin进行输入 2.使用cin.get(char)进行补救 3.使用哪一个cin.get() 4.文件尾条件 循环完后的一项最常见、最重要的任务&#xff1a;逐字符地读取来自文件或键盘的文本。 cin对象支持3种不同模式的单字符输入&#xff0c;其用户接口各不相同。下面介绍如何…

LabVIEW开发自适应降噪ANC

LabVIEW开发自适应降噪ANC 在许多情况下&#xff0c;信号很嘈杂&#xff0c;必须消除噪声。自适应降噪&#xff08;ANC&#xff09;是可用于消除信号噪声的主要实时方法之一。可以使用LabVIEW自适应滤滤器工具包来设计ANC应用程序。本文介绍使用自适应筛选器工具包的ANC的一些…

时间序列异常检测14篇顶会论文合集,附必备工具和数据集

今天来聊聊一个在量化交易、网络安全检测、自动驾驶汽车和大型工业设备的日常维护等领域都有重要作用的研究主题&#xff1a;时间序列异常检测。 时间序列异常检测是一种在时间序列数据中识别和标识与预期模式、趋势或行为不符的异常点或事件的技术。鉴于它如此广泛的应用范围…

与您一路同行:从代码质量到全面安全

作者&#xff1a;Shawn Prestridge&#xff0c;IAR资深现场应用工程师 / 美国FAE团队负责人 安全一直都是一个非常热门的话题&#xff0c;似乎每周都会听到这样的消息&#xff1a;某某公司如何被入侵&#xff0c;数百万用户的数据被泄露。 我们看到这么多的安全问题&#xff…

Cesium.CustomShader颜色值显示错误

官方示例&#xff1a; Cesium Sandcastle 测试过程&#xff1a; 1、修改示例&#xff0c;把customshader中的fragmentShaderText替换为如下代码 void fragmentMain(FragmentInput fsInput, inout czm_modelMaterial material) {//注意&#xff1a;下述颜色的b值是0.1&#x…

attention中Q,K,V的理解

第一种 1.首先定义三个线性变换矩阵&#xff0c;query&#xff0c;key&#xff0c;value&#xff1a; class BertSelfAttention(nn.Module):self.query nn.Linear(config.hidden_size, self.all_head_size) # 输入768&#xff0c; 输出768self.key nn.Linear(config.hidde…

「Linux」使用C语言制作简易Shell

&#x1f4bb;文章目录 &#x1f4c4;前言简易shell实现shell的概念系统环境变量shell的结构定义内建命令完整代码 &#x1f4d3;总结 &#x1f4c4;前言 对于很多学习后端的同学来讲&#xff0c;学习了C语言&#xff0c;发现除了能写出那个经典的“hello world”以外&#xff…

代码随想录算法训练营第一天 | 704. 二分查找 27. 移除元素

class Solution { public:int search(vector<int>& nums, int target) {int l0;int rnums.size()-1;while(l<r){int mid(lr)>>1;if(targetnums[mid]) return mid;if(target>nums[mid]){lmid1;}else{rmid-1;}}return -1;} }; 之前就已经熟悉二分法了&am…

倒计时(JS计时器)

<script>function countDown() {document.body.innerHTML ;//清空页面内容var nowTimer new Date(); //现在时间的毫秒数var valueTimer new Date("2024-1-1 12:00"); //用户输入年份倒计时时间毫秒数var timer (valueTimer - nowTimer) / 1000; //倒计时秒…

量化误差的测量

因为转换的精度有限&#xff0c;所以将模拟值数字化时会不可避免地出现量化误差。量化误差由转换器及其误差、噪声和非线性度决定。当输入信号和计数器时基有区别时就会产生量化误差。根据输入信号的相位和计数器时基的匹配程度&#xff0c;计数器有下列三种可能性&#xff1a;…