STM32CubeIDE(CUBE-MX hal库)----定时器

系列文章目录

STM32CubeIDE(CUBE-MX hal库)----初尝点亮小灯
STM32CubeIDE(CUBE-MX hal库)----按键控制
STM32CubeIDE(CUBE-MX hal库)----串口通信


文章目录

  • 系列文章目录
  • 前言
  • 一、定时器
  • 二、使用步骤
  • 三、HAL库实验代码
  • 三、标准库代码


前言

STM32定时器是一种多功能外设,可以为嵌入式系统提供各种定时和计数功能。通过合理配置,它可以适应各种应用场景,提供精准的定时和计数功能,使嵌入式系统更加灵活和可控。


一、定时器

功能:定时、捕获脉冲、计算PWM占空比、输出PWM波形、编码器计数。
如何进行计数:如果时钟输入频率是72MHZ,则计数器计数到72000000用了一秒钟。但是计数器寄存器的位数16bit只能计数65536/72000000次/秒=0.0009秒。所以需要一个预分频器(顾名思义是将频率进行降低计算公式 频率/(分频数+1)不分频就设为0)也是一个16位的寄存器,可进行65536次分频。则定时器最多可定时65536×65536/72000000=59.65s

二、使用步骤

设置串口一用于打印调试信息
在这里插入图片描述
打开串口中断
在这里插入图片描述
将高速外部时钟源设为晶振可以提高定时精度
在这里插入图片描述
时钟设置
在这里插入图片描述

定时器设置
在这里插入图片描述
定时器参数设置,下面的设置实现了1s的定时,如果想要0.5s的定时则将分频系数设为7199,计数值设为4999。计算过程72000000/(7199+1)/(4999+1)=2Hz 赫兹(Hz)是频率的单位,表示每秒的周期数。要将赫兹转换为秒 1/2=0.5s

在这里插入图片描述
定时器中断设置
在这里插入图片描述

三、HAL库实验代码

实验一:观察计数器的数值是如何变化的,只需要在已有的代码中加入以下代码头文件包含

/* USER CODE BEGIN Includes */
#include <string.h>
#include <string.h>
/* USER CODE END Includes */
  /* USER CODE BEGIN 2 */HAL_TIM_Base_Start(&htim4);int counter=0;char message[20];/* USER CODE END 2 */
int main(void)
{/* USER CODE BEGIN 1 *//* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();MX_TIM4_Init();MX_USART1_UART_Init();/* USER CODE BEGIN 2 */HAL_TIM_Base_Start(&htim4);int counter=0;char message[20];/* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){/* USER CODE END WHILE *//* USER CODE BEGIN 3 */counter=__HAL_TIM_GET_COUNTER(&htim4);//获取计数�?sprintf(message,"counter: %d",counter);HAL_UART_Transmit_IT(&huart1, (uint8_t *)message, sizeof(message));HAL_Delay(99);//延时100ms}/* USER CODE END 3 */
}

__HAL_TIM_SET_COUNTER 设置计数器的值
__HAL_TIM_GET_COUNTER 获取计数器的值
__HAL_TIM_SET_AUTORELOAD 设置重装载计数器的值
__HAL_TIM_GET_AUTORELOAD 获取重装载计数器的值
__HAL_TIM_SET_PRESCALER 设置预分频器的值

实验现象
在这里插入图片描述

实验二:利用定时器中断实现计时功能,通过重写HAL_TIM_PeriodElapsedCallback函数,实现每隔1s触发一次中断,num自增一向串口助手传num的值。

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) 函数是在使用STM32的HAL(Hardware Abstraction Layer)库时,用于处理定时器(TIM)定时周期到达事件的回调函数。该函数在定时器的中断服务子程序(ISR)中被调用,用于用户定义的处理。

参数 TIM_HandleTypeDef *htim 是一个指向定时器处理结构体的指针,其中包含了有关定时器的信息,如定时器的基地址、计数器值、定时器配置等。

uint8_t num=0;
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{if(htim==&htim4){num++;HAL_UART_Transmit_IT(&huart1, &num, 1);}}

实验现象
在这里插入图片描述

三、标准库代码

定时器初始化

void Timer_Init(void)
{//开启时钟RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4,ENABLE);//选择时基单元的时钟 选择内部时钟  默认使用内部时钟可以不写TIM_InternalClockConfig(TIM4);//配置时基单元TIM_TimeBaseInitTypeDef TimeBaseInitStructure;TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1;//时钟分频 不进行分频TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up;//计数方式  向上计数TimeBaseInitStructure.TIM_Period=10000-1 ; //自动重装载的值TimeBaseInitStructure.TIM_Prescaler=7200-1;//预分频系数TimeBaseInitStructure.TIM_RepetitionCounter=0;//重复计数器高级定时器里面才有TIM_TimeBaseInit(TIM4,&TimeBaseInitStructure);//时基初始化TIM_ITConfig(TIM4,TIM_IT_Update,ENABLE);//使能定时器中断NVIC_InitTypeDef NVIC_InitStructure;NVIC_InitStructure.NVIC_IRQChannel = TIM4_IRQn;  //TIM3中断NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;  //先占优先级2级NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;  //从优先级1级NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道被使能NVIC_Init(&NVIC_InitStructure);  //初始化NVIC寄存器TIM_Cmd(TIM4,ENABLE);//开启定时器}

中断服务函数

void EXTI4_IRQHandler(void)
{if(TIM_GetITStatus(TIM4,TIM_IT_Update)==SET) //检查定时器中断标志位是否置位{num++;TIM_ClearITPendingBit(TIM4,TIM_IT_Update);}
}

hal库和标准库函数对比

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)--------->void EXTI4_IRQHandler(void)(标准库)
HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim)和TIM_ITConfig(TIM4,TIM_IT_Update,ENABLE);功能类似开启定时器中断

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/235187.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java数据结构之《链式线性表的插入与删除》问题

一、前言&#xff1a; 这是怀化学院的&#xff1a;Java数据结构中的一道难度中等偏下的一道编程题(此方法为博主自己研究&#xff0c;问题基本解决&#xff0c;若有bug欢迎下方评论提出意见&#xff0c;我会第一时间改进代码&#xff0c;谢谢&#xff01;) 后面其他编程题只要我…

【Linux】基础IO--文件基础知识/文件操作/文件描述符

文章目录 一、文件相关基础知识二、文件操作1.C语言文件操作2.操作系统文件操作2.1 比特位传递选项2.2 文件相关系统调用2.3 文件操作接口的使用 三、文件描述符fd1.什么是文件描述符2.文件描述符的分配规则 一、文件相关基础知识 我们对文件有如下的认识&#xff1a; 1.文件 …

Youtube如何做SEO关键词挖掘

做好Youtube的SEO优化&#xff0c;可以使我们的视频得到更多的展示&#xff0c;更多的点击和观看&#xff0c;就能获得更多的粉丝和流量。一方面通过视频做引流到目标网站进行转化赚钱&#xff0c;另一方面可以通过涨粉接youtube广告赚钱。要做seo最关键的一步在于关键词的挖掘…

什么是网络可视化?网络可视化工具有用吗

网络可视化定义是自我描述的&#xff0c;因为它在单个屏幕上重新创建网络布局&#xff0c;以图形和图表的形式显示有关网络设备、网络指标和数据流的信息&#xff0c;为 IT 运营团队提供一目了然的理解和决策。 网络是复杂的实体&#xff0c;倾向于持续进化&#xff0c;随着业…

pycharm编译报错处理

1.c生成工具下载 https://visualstudio.microsoft.com/visual-cpp-build-tools/ 在这里插入图片描述 pip install pycocotools

【驱动】SPI驱动分析(四)-关键API解析

关键API 设备树 设备树解析 我们以Firefly 的SPI demo 分析下dts中对spi的描述&#xff1a; /* Firefly SPI demo */ &spi1 {spi_demo: spi-demo00{status "okay";compatible "firefly,rk3399-spi";reg <0x00>;spi-max-frequency <48…

Provisioning Profile的重要性

大家好&#xff0c;我是咕噜-凯撒。在iOS和macOS开发中&#xff0c;Provisioning Profile&#xff08;配置文件&#xff09;是一个至关重要的组成部分&#xff0c;它包含开发者证书、App ID和设备信息的文件&#xff0c;不仅用于验证应用程序的身份和权限&#xff0c;还包括了很…

软件测试面试经历和上岸后工作分享

哈喽、因为最近很多小伙伴私信问我的比较多&#xff0c;今天就专门说下&#xff0c;之前为甚转行和怎么选机构就不和大家细说了&#xff0c;之前的文章和视频也都有提到过。 今天主要是和大家说下自己转行后的感受和面试时候的一些经历&#xff0c;希望能给正在转行&#xff0c…

PCB布线为什么不能走直角或锐角-笔记

PCB布线为什么不能走直角或锐角-笔记 摘要一.PCB走线在直角转弯的地方&#xff0c;信号前后部分相互影响这几个理由我们来一一分析一下传输线的直角带来的寄生电容从阻抗的角度来看直角的尖角产生放电或者电磁辐射走线直角的工艺问题 摘要 有一定熟悉画过PCB板的人或者PCB教学…

模拟算法【2】

文章目录 &#x1f958;6. N 字形变换&#x1f372;题目&#x1fad5;算法原理&#x1f963;代码实现 &#x1f957;38. 外观数列&#x1f37f;题目&#x1f9c2;算法原理&#x1f9c8;代码实现 &#x1f958;6. N 字形变换 &#x1f372;题目 题目链接&#xff1a;6. N 字形变…

VUE2+THREE.JS辉光设定和解决辉光导致背景变暗的问题

THREE.JS辉光设定和解决辉光导致背景变暗的问题 THREE.JS 辉光设定THREE.JS 辉光导致背景变暗的问题1.设定背景图片2.初始化辉光3. animate 一直渲染辉光 THREE.JS 辉光设定 给我的设计好的fbx模型,已经设定好了模型发光材质,所以直接添加辉光效果,就可以自动发光 blender模型生…

经典策略梯度算法

经典策略梯度算法 DDPG算法 DDPG 算法被提出的初衷其实是 DQN 算法的一个连续动作空间版本扩展。深度确定性策略梯度算法&#xff08; deep deterministic policy gradient&#xff0c;DDPG&#xff09;&#xff0c;是一种确定性的策略梯度算法。 由于DQN算法中动作是通过贪…