初识elasticsearch

文章目录

  • 一、前言
  • 二、了解ES
    • 2.1 elasticsearch的作用
    • 2.2 ELK技术栈
    • 2.3 elasticsearch和lucene
    • 2.4 为什么不是其他搜索技术
    • 2.5 总结
  • 三、倒排索引
    • 3.1 正向索引
    • 3.2 倒排索引
    • 3.3 正向和倒排
  • 四、es的一些概念
    • 4.1 文档和字段
    • 4.2 索引和映射
    • 4.3 mysql和elasticsearch

一、前言

前一段时间在接触一个新项目的时候,学习和运用了elasticsearch(简称es),后期会不定期出一系列es的学习笔记内容(从初识到安装再到应用部署)。
事实证明,本科做课设涉及查询搜索的时候数据量不大,基本不需要考虑太多应用性能的问题,但是当运用的数据量级别开始变成“大数据”的情况下,如果还是仅仅简单的数据库查找,用户可能需要等待几分钟甚至更长时间去检索到需要的数据。所以es的作用就体现出来了,es在微服务和分布式应用当中应用很广泛的。

二、了解ES

2.1 elasticsearch的作用

elasticsearch(es)是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容。例如在以下的应用场景中,都会使用到es

  • 在Github上搜索代码
  • 在电商网站搜索商品
  • 在百度搜索答案
  • 在打车软件搜索附近的车(具体这个为什么后续系列会详细说明的)

2.2 ELK技术栈

elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域。
而elasticsearch是elastic stack的核心,负责存储、搜索、分析数据。
在这里插入图片描述

2.3 elasticsearch和lucene

elasticsearch底层是基于lucene来实现的。

Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。官网地址:https://lucene.apache.org/ 。
在这里插入图片描述
elasticsearch的发展历史:

  • 2004年Shay Banon基于Lucene开发了Compass
  • 2010年Shay Banon 重写了Compass,取名为Elasticsearch。

ES的官网地址https://www.elastic.co/cn/

相比于lucene,elasticsearch具备如下优势:

  • 支持分布式,可水平扩展
  • 提供Restful接口,可被任何语言调用

2.4 为什么不是其他搜索技术

答案很简单:因为开源搜索引擎排名第一,大厂主流搜索引擎。
虽然在早期,Apache Solr是最主要的搜索引擎技术,但随着发展elasticsearch已经渐渐超越了Solr,独占鳌头。Solr和ES的技术比较如下:在这里插入图片描述
关于两者的比较更加详细的信息可以参考这篇文章

2.5 总结

什么是elasticsearch?

  • 一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能

什么是elastic stack(ELK)?

  • 是以elasticsearch为核心的技术栈,包括beats、Logstash、kibana、elasticsearch

什么是Lucene?

  • 是Apache的开源搜索引擎类库,提供了搜索引擎的核心API

三、倒排索引

倒排索引的概念是基于MySQL这样的正向索引而言的。

3.1 正向索引

什么是正向索引呢?例如给下表(tb_goods)中的id创建索引:
在这里插入图片描述
如果是根据id查询,那么直接走索引,查询速度非常快。

但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:

1)用户搜索数据,条件是title符合"%手机%"

2)逐行获取数据,比如id为1的数据

3)判断数据中的title是否符合用户搜索条件

4)如果符合则放入结果集,不符合则丢弃。回到步骤1

逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。

3.2 倒排索引

倒排索引中有两个非常重要的概念:

  • 文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息
  • 词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条

创建倒排索引是对正向索引的一种特殊处理,流程如下:

  • 将每一个文档的数据利用算法分词,得到一个个词条
  • 创建表,每行数据包括词条、词条所在文档id、位置等信息
  • 因为词条唯一性,可以给词条创建索引,例如hash表结构索引

如图:在这里插入图片描述
倒排索引的搜索流程如下(以搜索"华为手机"为例):

1)用户输入条件"华为手机"进行搜索。

2)对用户输入内容分词,得到词条:华为手机

3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。

4)拿着文档id到正向索引中查找具体文档。

如图:
在这里插入图片描述
虽然要先查询倒排索引,再查询倒排索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。

3.3 正向和倒排

那么为什么一个叫做正向索引,一个叫做倒排索引呢?

  • 正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程

  • 倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程

正向索引

  • 优点:
    • 可以给多个字段创建索引
    • 根据索引字段搜索、排序速度非常快
  • 缺点:
    • 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。

倒排索引

  • 优点:
    • 根据词条搜索、模糊搜索时,速度非常快
  • 缺点:
    • 只能给词条创建索引,而不是字段
    • 无法根据字段做排序

四、es的一些概念

elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。

4.1 文档和字段

elasticsearch是面向**文档(Document)**存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:

在这里插入图片描述
而Json文档中往往包含很多的字段(Field),类似于数据库中的列。

4.2 索引和映射

索引(Index),就是相同类型的文档的集合。

例如:

  • 所有用户文档,就可以组织在一起,称为用户的索引;
  • 所有商品的文档,可以组织在一起,称为商品的索引;
  • 所有订单的文档,可以组织在一起,称为订单的索引;

在这里插入图片描述
因此,我们可以把索引当做是数据库中的表。

数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。

4.3 mysql和elasticsearch

我们统一的把mysql与elasticsearch的概念做一下对比:

MySQLElasticsearch说明
TableIndex索引(index),就是文档的集合,类似数据库的表(table)
RowDocument文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式
ColumnField字段(Field),就是JSON文档中的字段,类似数据库中的列(Column)
SchemaMappingMapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)
SQLDSLDSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD

是不是说,我们学习了elasticsearch就不再需要mysql了呢?

并不是如此,两者各自有自己的擅长支出:

  • Mysql:擅长事务类型操作,可以确保数据的安全和一致性

  • Elasticsearch:擅长海量数据的搜索、分析、计算

因此在企业中,往往是两者结合使用:

  • 对安全性要求较高的写操作,使用mysql实现
  • 对查询性能要求较高的搜索需求,使用elasticsearch实现
  • 两者再基于某种方式,实现数据的同步,保证一致性

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/235709.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

StartRocks 连接 Paimon外部表

版本 StartRocksPaimon3.2.00.5 sr 环境准备 CREATE external CATALOG paimon_hdfs PROPERTIES ("type" "paimon",paimon.catalog.type filesystem,"paimon.catalog.warehouse" "hdfs://hadoop03:9000/paimon/test" );mysql> …

高效率:使用DBeaver连接spark-sql

提高运行效率一般采取底层使用spark引擎替换成hive引擎的方式提高效率,但替换引擎配置较为复杂考虑到兼容版本且容易出错,所以本篇将介绍使用DBeaver直接连接spark-sql快速操作hive数据库。 在spark目录下运行以下命令,创建一个SparkThirdSe…

链表高频面试题

1. 两个链表第一个公共子节点 LeetCode160 给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点,返回 null 。 图示两个链表在节点 c1 开始相交: listA [4,1,8,4,5], listB [5…

Windows系列:windows server 2016 下域环境的搭建(完整版)

windows server 2016 下域环境的搭建(完整版) windows server 2016 下域环境的搭建在搭建之前简单介绍一下基础知识:一、环境介绍 :1.这里用拓扑图进行展示:2.所有环境配置如下 二、搭建主域:一. 创建主域1…

91基于matlab的以GUI实现指纹的识别和匹配百分比

基于matlab的以GUI实现指纹的识别和匹配百分比,中间有对指纹的二值化,M连接,特征提取等处理功能。数据可更换自己的,程序已调通,可直接运行。 91M连接 特征提取 (xiaohongshu.com)

Android 架构实战MVI进阶

MVI架构的原理和流程 MVI架构是一种基于响应式编程的架构模式,它将应用程序分为四个核心组件:模型(Model)、视图(View)、意图(Intent)和状态(State)。 原理&…

Course1-Week3-分类问题

Course1-Week3-分类问题 文章目录 Course1-Week3-分类问题1. 逻辑回归1.1 线性回归不适用于分类问题1.2 逻辑回归模型1.3 决策边界 2. 逻辑回归的代价函数3. 实现梯度下降4. 过拟合与正则化4.1 线性回归和逻辑回归中的过拟合4.2 解决过拟合的三种方法4.3 正则化4.4 用于线性回归…

【JAVA面向对象编程】--- 探索子类如何继承父类

🌈个人主页: Aileen_0v0🔥学习专栏: Java学习系列专栏 💫个人格言:"没有罗马,那就自己创造罗马~" 目录 继承 继承的普通成员方法调用 及 普通成员变量修改 构造方法的调用 子类构造方法 继承 package Inherit;class Animal …

前端:实现div的隐藏与显示

效果 完整代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" content"widthdevice-widt…

WSL2 docker GUI 界面

在 WSL2 docker 中运行GUI界面。 具体流程和远程显示Ubuntu界面类似&#xff0c;链接, 更简单一点&#xff0c; 少了 ssh 的部分。 安装好wsl2 和 docker wsl2 运行GUI程序&#xff0c;windows 会默认弹出窗口。 可以安装 gedit 测试一下 windows 下载并运行 Xlaunch. 运行 d…

Word 小知识之 docx 和 doc 的区别

下面我们从4个方面为大家总结了有关于docx和doc的区别&#xff0c;一起来看一看&#xff1a; 1. 文件格式 doc和docx的区别中较大的区别就是文件格式不同&#xff0c;一个是二进制一个为XML格式。doc&#xff1a;是早期的Word文档格式&#xff0c;采用二进制文件格式。这种…

最新Midjourney绘画提示词Prompt

最新Midjourney绘画提示词Prompt 一、AI绘画工具 SparkAi【无需魔法使用】&#xff1a; SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署AI创作ChatGPT&#xff1f;小编这里写一个详细图文教程吧&#xff01;本系统使用NestjsVueTypescript框架技术&am…