卷积神经网络(VGG-16)猫狗识别

文章目录

  • 一、前言
  • 二、前期工作
    • 1. 设置GPU(如果使用的是CPU可以忽略这步)
    • 2. 导入数据
    • 3. 查看数据
  • 二、数据预处理
    • 1. 加载数据
    • 2. 再次检查数据
    • 3. 配置数据集
    • 4. 可视化数据
  • 三、构建VG-16网络
  • 四、编译
  • 五、训练模型
  • 六、模型评估
  • 七、保存and加载模型
  • 八、预测

一、前言

我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1

往期精彩内容:

  • 卷积神经网络(CNN)实现mnist手写数字识别
  • 卷积神经网络(CNN)多种图片分类的实现
  • 卷积神经网络(CNN)衣服图像分类的实现
  • 卷积神经网络(CNN)鲜花识别
  • 卷积神经网络(CNN)天气识别
  • 卷积神经网络(VGG-16)识别海贼王草帽一伙
  • 卷积神经网络(ResNet-50)鸟类识别
  • 卷积神经网络(AlexNet)鸟类识别
  • 卷积神经网络(CNN)识别验证码

来自专栏:机器学习与深度学习算法推荐

二、前期工作

1. 设置GPU(如果使用的是CPU可以忽略这步)

import tensorflow as tfgpus = tf.config.list_physical_devices("GPU")if gpus:tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpus[0]],"GPU")# 打印显卡信息,确认GPU可用
print(gpus)

2. 导入数据

import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号import os,PIL# 设置随机种子尽可能使结果可以重现
import numpy as np
np.random.seed(1)# 设置随机种子尽可能使结果可以重现
import tensorflow as tf
tf.random.set_seed(1)#隐藏警告
import warnings
warnings.filterwarnings('ignore')import pathlib
image_count = len(list(data_dir.glob('*/*')))print("图片总数为:",image_count)

3. 查看数据

image_count = len(list(pictures_dir.glob('*.png')))
print("图片总数为:",image_count)
图片总数为: 3400

二、数据预处理

1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset

batch_size = 8
img_height = 224
img_width = 224

TensorFlow版本是2.2.0的同学可能会遇到module 'tensorflow.keras.preprocessing' has no attribute 'image_dataset_from_directory'的报错,升级一下TensorFlow就OK了。

train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="training",seed=12,image_size=(img_height, img_width),batch_size=batch_size)
Found 3400 files belonging to 2 classes.
Using 2720 files for training.
val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="validation",seed=12,image_size=(img_height, img_width),batch_size=batch_size)
Found 3400 files belonging to 2 classes.
Using 680 files for validation.

我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names = train_ds.class_names
print(class_names)
['cat', 'dog']

2. 再次检查数据

for image_batch, labels_batch in train_ds:print(image_batch.shape)print(labels_batch.shape)break
(8, 224, 224, 3)
(8,)
  • Image_batch是形状的张量(8, 224, 224, 3)。这是一批形状224x224x3的8张图片(最后一维指的是彩色通道RGB)。
  • Label_batch是形状(8,)的张量,这些标签对应8张图片

3. 配置数据集

AUTOTUNE = tf.data.AUTOTUNEdef preprocess_image(image,label):return (image/255.0,label)# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
val_ds   = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds   = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

4. 可视化数据

plt.figure(figsize=(15, 10))  # 图形的宽为15高为10for images, labels in train_ds.take(1):for i in range(8):ax = plt.subplot(5, 8, i + 1) plt.imshow(images[i])plt.title(class_names[labels[i]])plt.axis("off")

在这里插入图片描述

三、构建VG-16网络

VGG优缺点分析:

  • VGG优点

VGG的结构非常简洁,整个网络都使用了同样大小的卷积核尺寸(3x3)和最大池化尺寸(2x2)。

  • VGG缺点

1)训练时间过长,调参难度大。2)需要的存储容量大,不利于部署。例如存储VGG-16权重值文件的大小为500多MB,不利于安装到嵌入式系统中。

结构说明:

  • 13个卷积层(Convolutional Layer),分别用blockX_convX表示
  • 3个全连接层(Fully connected Layer),分别用fcXpredictions表示
  • 5个池化层(Pool layer),分别用blockX_pool表示

VGG-16包含了16个隐藏层(13个卷积层和3个全连接层),故称为VGG-16

from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropoutdef VGG16(nb_classes, input_shape):input_tensor = Input(shape=input_shape)# 1st blockx = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor)x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)# 2nd blockx = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x)x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x)# 3rd blockx = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x)x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x)x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x)# 4th blockx = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x)# 5th blockx = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x)# full connectionx = Flatten()(x)x = Dense(4096, activation='relu',  name='fc1')(x)x = Dense(4096, activation='relu', name='fc2')(x)output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)model = Model(input_tensor, output_tensor)return modelmodel=VGG16(1000, (img_width, img_height, 3))
model.summary()

四、编译

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于衡量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 评价函数(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
model.compile(optimizer="adam",loss     ='sparse_categorical_crossentropy',metrics  =['accuracy'])

五、训练模型

from tqdm import tqdm
import tensorflow.keras.backend as Kepochs = 10
lr     = 1e-4# 记录训练数据,方便后面的分析
history_train_loss     = []
history_train_accuracy = []
history_val_loss       = []
history_val_accuracy   = []for epoch in range(epochs):train_total = len(train_ds)val_total   = len(val_ds)"""total:预期的迭代数目ncols:控制进度条宽度mininterval:进度更新最小间隔,以秒为单位(默认值:0.1)"""with tqdm(total=train_total, desc=f'Epoch {epoch + 1}/{epochs}',mininterval=1,ncols=100) as pbar:lr = lr*0.92K.set_value(model.optimizer.lr, lr)for image,label in train_ds:      history = model.train_on_batch(image,label)train_loss     = history[0]train_accuracy = history[1]pbar.set_postfix({"loss": "%.4f"%train_loss,"accuracy":"%.4f"%train_accuracy,"lr": K.get_value(model.optimizer.lr)})pbar.update(1)history_train_loss.append(train_loss)history_train_accuracy.append(train_accuracy)print('开始验证!')with tqdm(total=val_total, desc=f'Epoch {epoch + 1}/{epochs}',mininterval=0.3,ncols=100) as pbar:for image,label in val_ds:      history = model.test_on_batch(image,label)val_loss     = history[0]val_accuracy = history[1]pbar.set_postfix({"loss": "%.4f"%val_loss,"accuracy":"%.4f"%val_accuracy})pbar.update(1)history_val_loss.append(val_loss)history_val_accuracy.append(val_accuracy)print('结束验证!')print("验证loss为:%.4f"%val_loss)print("验证准确率为:%.4f"%val_accuracy)

六、模型评估

epochs_range = range(epochs)plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)plt.plot(epochs_range, history_train_accuracy, label='Training Accuracy')
plt.plot(epochs_range, history_val_accuracy, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, history_train_loss, label='Training Loss')
plt.plot(epochs_range, history_val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

七、保存and加载模型

# 保存模型
model.save('model/21_model.h5')
# 加载模型
new_model = tf.keras.models.load_model('model/21_model.h5')

八、预测

# 采用加载的模型(new_model)来看预测结果plt.figure(figsize=(18, 3))  # 图形的宽为18高为5
plt.suptitle("预测结果展示")for images, labels in val_ds.take(1):for i in range(8):ax = plt.subplot(1,8, i + 1)  # 显示图片plt.imshow(images[i].numpy())# 需要给图片增加一个维度img_array = tf.expand_dims(images[i], 0) # 使用模型预测图片中的人物predictions = new_model.predict(img_array)plt.title(class_names[np.argmax(predictions)])plt.axis("off")

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/238557.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[github全教程]github版本控制最全教学------- 大厂找工作面试必备!

作者:20岁爱吃必胜客(坤制作人),近十年开发经验, 跨域学习者,目前于新西兰奥克兰大学攻读IT硕士学位。荣誉:阿里云博客专家认证、腾讯开发者社区优质创作者,在CTF省赛校赛多次取得好成绩。跨领域…

8、内部FLASH模拟EEPROM实验(STM32F407)

STM32编程方式 在线编程(ICP,In-Circuit Programming): 通过JTAG/SWD协议或者系统加载程序(Bootloader)下载用户应用程序到微控制器中。 在程序中编程(IAP,In Application Programming):通过任何一种通信接口(如IO端口,USB,CAN,UART,I2C,SPI等)下载程…

[论文阅读]Sparse Fuse Dense

SFD Sparse Fuse Dense: Towards High Quality 3D Detection with Depth Completion 论文网址:SFD 论文代码:SFD 论文简读 本文主要关注如何利用深度完成技术提高三维目标检测的质量。论文提出了一种名为 SFD(Sparse Fuse Dense&#xff0…

iOS简单理解区分MVC、MVP、MVVM

MVC、MVP、MVVM 前言 这篇文章简单介绍MVC、MVP和MVVM三种架构,并配上一个简单的Swift demo来区分MVC和MVVM两种架构。 MVC 传统MVC 下图是传统结构MVC,可以看到这种结构是紧耦合的,不推荐使用。 苹果的MVC 如下图,这是苹果…

AWS Remote Control ( Wi-Fi ) on i.MX RT1060 EVK - 1 “建立开发环境”

这个系列的文章将叙述如何借由 NXP 的“evkmimxrt1060_aws_remote_control_wifi_nxp”这支 Sample Code,达到 NXP RT1060EVK 经由 U-Blox EVK-JODY-W263 将资讯传到 AWS 上,并可借由手机对 RT1060 EVK 的 LED 进行远端控制。 整体架构如下图所示&#x…

漏洞扫描服务是什么

漏洞扫描服务是维护网络安全的重要一环。通过定期或实时的漏洞扫描,组织可以及时发现并修复可能存在的安全威胁,增强自身网络的安全性。在选择漏洞扫描服务时,需要明确自身的需求和目标,并选择合适的工具和服务提供商。只有这样&a…

TZOJ 1386 十转换转R进制

答案&#xff1a; #include<stdio.h> char fun(int n) {if (n > 0 && n < 10) //如果是小于10进制的return n 48; //ASCII值48else if (n > 10 && n < 16) //如果是大于10进制小于16进制的return n 55; //ASCII值55elseretur…

《微信小程序开发从入门到实战》学习三十八

4.2 云开发JSON数据库 4.2.9 条件查询与查询指令 在查询数据时&#xff0c;有时需要对查找的数据添加一些限定条件&#xff0c;只获取满足给定条件的数据&#xff0c;这样的查询称为条件查询。 可以在集合引用上使用where方法指定查询条件&#xff0c;再用get方法&#xff0…

28.线段树与树状数组基础

一、线段树 1.区间问题 线段树是一种在算法竞赛中常用来维护区间的数据结构。它思想非常简单&#xff0c;就是借助二叉树的结构进行分治&#xff0c;但它的功能却非常强大&#xff0c;因此在很多类型的题目中都有它的变种&#xff0c;很多题目都需要以线段树为基础进行发展。…

SpringBoot结合easyexcel处理Excel文件

原创/朱季谦 假如有这样一个需求&#xff0c;每天需要读取以下表头的Excel文件&#xff0c;统计文件里击中黑名单的比例&#xff0c;该文件is_blacklist列的1表示击中了黑名单&#xff0c;0表示未击中黑名单。 基于该需求&#xff0c;可以在定时任务通过easyexcel工具进行处理…

通过adb命令查看当前界面的Activity

1、先进入shell 2、输入如下命令 dumpsys activity | grep "mFoc"执行效果如下&#xff1a; 从上图可以看到当前正在运行app的进程名称和当前显示的Activity完整路径类名。

Spring AOP 代码案例

目录 AOP组成 通知的具体方法类型 引入Spring AOP依赖 定义AOP层 UserController Postman测试 AOP工作流程 AOP组成 切面 : 切⾯&#xff08;Aspect&#xff09;由切点&#xff08;Pointcut&#xff09;和通知&#xff08;Advice&#xff09;组成&#xff0c;它既包含了…