高并发下缓存失效问题-缓存穿透、缓存击穿、缓存雪崩、Redis分布式锁简单实现、Redisson实现分布式锁

文章目录

  • 缓存基本使用范式暴露的几个问题
  • 缓存失效问题---缓存穿透
  • 缓存失效问题---缓存击穿
    • 一、单机锁
      • 正确的锁粒度
      • 不正确的锁粒度无法保证查询数据库次数是唯一
    • 二、分布式锁
      • getCatalogJsonData()
      • 分布式锁演进---基本原理
      • 分布式锁(加锁)演进一:删锁失败导致死锁
      • 分布式锁(加锁)演进二:给‘锁’设置过期时间防止死锁
      • 分布式锁(加锁)演进三:必须保证过期时间和占锁动作原子性
      • 分布式锁(解锁)演进一:业务逻辑执行时间大于‘锁’的过期时间
      • 分布式锁(解锁)演进二:UUID保证删除的是自己的‘锁’
      • 分布式锁(解锁)演进三:lua脚本保证删‘锁’原子性
    • 三、锁的自动续期
    • 四、Redis简单实现分布式锁的完整代码
  • 缓存失效问题---缓存雪崩
  • 分布式锁---Redisson

缓存基本使用范式暴露的几个问题

{1、先查询缓存2、if(缓存没有命中){2.1、查询数据库2.2、查询结果放入缓存2.3、同时return结果}3、缓存命中直接return缓存数据
}

如下;使用缓存高效的查询‘三级分类’数据,就完全遵循上面提到的范式

    public Map<Long, List<Catalog2VO>> getCatalogJsonBaseMethod() {String key = ProductConstant.RedisKey.INDEX_CATEGORY_JSON;// 1、从缓存中获取数据String categoryListFromCache = redisTemplate.opsForValue().get(key);if (!StringUtils.hasText(categoryListFromCache)) {// 2.1、缓存没有命中,查询数据库Map<Long, List<Catalog2VO>> catalogJsonFromDB = getCatalogJsonFromDB();// 2.2、将查询结果放入缓存redisTemplate.opsForValue().set(key,JSON.toJSONString(catalogJsonFromDB));return catalogJsonFromDB;}// 3、缓存命中便直接returnreturn JSON.parseObject(categoryListFromCache, new TypeReference<>() {});}

该范式在高并发、分布式下会暴露以下几个问题,这也是本章需要解决和讨论的点

  • 高并发缓存失效之缓存穿透
  • 高并发缓存失效之缓存击穿
  • 高并发缓存失效之缓存雪崩
  • 分布式架构下的分布式锁

缓存失效问题—缓存穿透

请求查询一个百分百不存在的数据

假设id=idooy这条记录在数据库中压根不存在;按照请求处理逻辑先查询缓存,但因为这本就是一条不存在的记录(假设成立),因此缓存也不可能命中,缓存不命中接着就会查询数据库;如果没有将这一次请求查询的null写入缓存,这将导致id=idooy这条请求每次都要去数据库,直接失去了缓存的意义

风险: 利用不存在的数据发送大量请求,数据库瞬时压力增大,最终导致数据库崩溃
解决: 将null结果进行缓存,并加入短暂的过期时间;有时查询固定的值,不需要请求携带参数,这种情况本身就不会出现缓存穿透

缓存失效问题—缓存击穿

某一个Key在高并发请求期间刚好过期失效

对于一个设置了过期时间的Key,如果这个Key在将来的某个时间被高并发访问期间刚好过期失效,那么高并发的请求压力直接给到数据库
解决: 加锁;对同一个Key的高并发请求保证只有一个请求打给数据库;其他请求等待并最终从缓存中获取;下面讨论单机锁分布式锁

一、单机锁

单机锁是指在单体应用中或同一个进程中利用锁的排他性保证高并发期间某个Key失效时只有一个请求去数据库进行查询来避免缓存击穿

代码实现如下所示:

    @Overridepublic Map<Long, List<Catalog2VO>> getCatalogJson() {String key = ProductConstant.RedisKey.INDEX_CATEGORY_JSON;// 1、从缓存中获取数据String categoryListFromCache = redisTemplate.opsForValue().get(key);if (!StringUtils.hasText(categoryListFromCache)) {// 2、缓存没有命中,查询数据库,加锁保证数据库只查询一次// 因为当前this实例为单例,故可以作为锁资源使用synchronized (this) {// 2.1、高并发下必然有N个请求同时等待竞争锁,所以竞争到锁的第一件事就是再查一遍缓存String result = redisTemplate.opsForValue().get(key);if (StringUtils.hasText(result)) {return JSON.parseObject(result, new TypeReference<>() {});}// 2.2、缓存依旧没有命中的情况下查询数据库Map<Long, List<Catalog2VO>> catalogJsonFromDB = getCatalogJsonFromDB();// 2.3、将查询结果放入缓存redisTemplate.opsForValue().set(key,JSON.toJSONString(catalogJsonFromDB),2,TimeUnit.HOURS);return catalogJsonFromDB;}}// 3、缓存命中便直接returnreturn JSON.parseObject(categoryListFromCache, new TypeReference<>() {});}

正确的锁粒度

在这里插入图片描述

不正确的锁粒度无法保证查询数据库次数是唯一

在这里插入图片描述
在这里插入图片描述

二、分布式锁

上面单机锁本质就是使用当前进程中的某个单例对象充当锁资源;在微服务架构分布式部署下,同一个商品服务可能部署N多个,此时每个服务进程之间相互隔离。

在这里插入图片描述
因此;本地锁,只能锁住当前进程,分布式架构下需要分布式锁

getCatalogJsonData()

    private Map<Long, List<Catalog2VO>> getCatalogJsonData() {String key = ProductConstant.RedisKey.INDEX_CATEGORY_JSON;String result = redisTemplate.opsForValue().get(key);if (!StringUtils.hasText(result)) {Map<Long, List<Catalog2VO>> catalogJsonFromDB = getCatalogJsonFromDB();redisTemplate.opsForValue().set(key,JSON.toJSONString(catalogJsonFromDB),2,TimeUnit.HOURS);return catalogJsonFromDB;}return JSON.parseObject(result, new TypeReference<>() {});}

分布式锁演进—基本原理

所有的‘商品服务’可以同时去一个地方“占坑”,如果占到就执行逻辑,否则就必须等待,直到释放锁。
“占坑”可以去Redis,也可以去数据库,可以去任何只要“商品服务”都能访问到的地方
在这里插入图片描述

分布式锁(加锁)演进一:删锁失败导致死锁

在这里插入图片描述
如上图;执行业务逻辑出现异常或者在删锁前系统宕机(kill -9);直接导致没有执行删锁操作。那么其他请求就无法"成功占锁",造成死锁。

接下来给"锁"设置过期时间防止死锁。即使删锁失败也会自动删除

分布式锁(加锁)演进二:给‘锁’设置过期时间防止死锁

在这里插入图片描述
所以,“占锁+设置过期时间”必须保证原子性

分布式锁(加锁)演进三:必须保证过期时间和占锁动作原子性

Boolean lock = redisTemplate.opsForValue().setIfAbsent("lock", "ok",3,TimeUnit.SECONDS);

在这里插入图片描述

分布式锁(解锁)演进一:业务逻辑执行时间大于‘锁’的过期时间

业务逻辑执行时间超过‘锁’的过期时间;这也就意味着业务逻辑执行完毕以后删的就不是自己的锁。
试想如下高并发场景下, 假设‘锁’的过期时间为10s,业务的执行时间为15s;

①号请求执行到第10s,‘锁’自动过期;②号请求立马占锁成功执行业务逻辑。
在第15s①号业务逻辑执行完毕,成功删除锁。很显然此时①号删除的就不是自己的锁(自己的锁在第10s的时候已自动删除了),而是②号的锁。
同时在15s这一时刻①号删了②号的锁;接着3号占锁成功,如此情况下‘锁永久失效’

在这里插入图片描述
该况下暴露的问题本质就是锁删除了他人的锁;那么接下来就通过唯一ID保证线程删除的是自己的锁

分布式锁(解锁)演进二:UUID保证删除的是自己的‘锁’

在占锁的时候,值指定为uuid,每个人匹配是自己的锁才删除
在这里插入图片描述
如图;问题还是暴露了出来。get(“lock”)并且equals成立,此时锁刚好自动过期删除了,另一个线程占锁成功了,此时再执行delete删锁同样删除的不是自己的锁。
所以这个问题的本质就是删锁的过程不能保证原子性

分布式锁(解锁)演进三:lua脚本保证删‘锁’原子性

如下图;官方提供了‘解锁’的建议和保证解锁过程原子性的lua脚步

  • 锁的值不要设置固定字符串,而是设置一个不可猜测的大随机字符串,称为token。
  • 不是用DEL释放锁,而是发送一个脚本,仅在值匹配时才删除键
    在这里插入图片描述

根据官方提示;解锁的核心业务代码片段

// 解锁
redisTemplate.execute(new DefaultRedisScript<>(getLuaScript(),Long.class),Arrays.asList("lock"),uuid);private String getLuaScript(){return "if redis.call(\"get\",KEYS[1]) == ARGV[1]\n" +"then\n" +"    return redis.call(\"del\",KEYS[1])\n" +"else\n" +"    return 0\n" +"end";}

在这里插入图片描述

三、锁的自动续期

业务执行时间超长;业务逻辑还未执行完毕‘锁’自动过期了,最简单的方式就是给‘锁’设置足够长的时间。
但完美的解决该问题,自己写代码实现还是很困难的,所以这个问题就抛出Redisson,它提供的分布式锁会解决上面提到的所有问题;包括锁的自动续期

四、Redis简单实现分布式锁的完整代码

  • 加锁原子性命令;保证’设置过期时间和占锁’是原子性操作
  • 解锁原子性命令;uuid保证删的是自己的锁;lua脚本保证了删锁的原子性
  • 设置‘锁’的过期时间足够长,确保业务逻辑执行时间不会超过过期时间这种简单粗暴的方式来解决‘锁’过期自动续期的问题
private Map<Long, List<Catalog2VO>> getCatalogJsonWithRedisLock() {// 所有的请求进来先占坑,即抢占锁String uuid = UUID.randomUUID().toString();// 原子性命令;保证'设置过期时间和占锁'是原子性操作Boolean lock = redisTemplate.opsForValue().setIfAbsent("lock", uuid,3,TimeUnit.SECONDS);if (lock) {// "占坑"成功,执行业务逻辑Map<Long, List<Catalog2VO>> result;try {result = getCatalogJsonData();} finally {// 解锁:uuid保证删的是自己的锁;lua脚本保证了删锁的原子性redisTemplate.execute(new DefaultRedisScript<>(getLuaScript(),Long.class),Arrays.asList("lock"),uuid);}return result;}else {// "占坑"失败,自旋try {// 防止栈溢出TimeUnit.MILLISECONDS.sleep(200);} catch (InterruptedException e) {throw new RuntimeException(e);}return getCatalogJsonWithRedisLock();}}private String getLuaScript(){return "if redis.call(\"get\",KEYS[1]) == ARGV[1]\n" +"then\n" +"    return redis.call(\"del\",KEYS[1])\n" +"else\n" +"    return 0\n" +"end";}private Map<Long, List<Catalog2VO>> getCatalogJsonData() {String key = ProductConstant.RedisKey.INDEX_CATEGORY_JSON;String result = redisTemplate.opsForValue().get(key);if (!StringUtils.hasText(result)) {Map<Long, List<Catalog2VO>> catalogJsonFromDB = getCatalogJsonFromDB();redisTemplate.opsForValue().set(key,JSON.toJSONString(catalogJsonFromDB),2,TimeUnit.HOURS);return catalogJsonFromDB;}return JSON.parseObject(result, new TypeReference<>() {});}

缓存失效问题—缓存雪崩

某一时刻大量的Key同时失效

假设缓存中大量的Key使用了相同过期时间,这直接导致在将来的某个时刻这些Key同时失效;此时再大量请求这些Key压力都来到了数据库,使数据库瞬时压力过大可能出现崩溃
解决: 再原有的失效时间上增加一个随机值,这样每个缓存的过期时间的重复率就会很低,也就很难出现Key大面积同时失效导致缓存雪崩问题

// 再原有的失效时间基础上添加随机时间片
// 这里没有增加随机时间片,因为Key的数量有限,足以保证失效时间的离散分布
redisTemplate.opsForValue().set(key,JSON.toJSONString(catalogJsonFromDB),2,TimeUnit.HOURS);

分布式锁—Redisson

上面基于Redis的setnx命令简单的实现了一个分布式锁,并在实现的过程中暴露出许多问题,也都一一的解决了。但是官方建议还是使用redlock来实现分布式锁

注意:Redlock算法实现起来稍微复杂一点,但提供了更好的保证和容错能力
在这里插入图片描述
这里边就存在针对Java的实现Redisson
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/238888.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

element中el-input限制只输入正整数或保留两位小数

文章目录 一、前言二、实现2.1、HTML2.2、只输入正整数2.3、只能输入数字或小数点 三、最后 一、前言 常见的el-input可能会限制用户只能输入正整数或保留两位小数&#xff0c;达到输入金额的需求&#xff0c;点击【跳转】访问el-input的官方文档 element-ui是有el-input-numb…

速通MySql

一、简介 1、什么是数据库 数据仓库&#xff0c;用来存储数据。访问必须用SQL语句来访问 2、数据库的类型 1、关系型数据库&#xff1a;Oracle、DB2、Microsoft SQL Server、Microsoft Access、MySQL等 可以用SQL语句方便的在一个表以及多个表之间做非常复杂的数据查询&#…

flutter开发实战-ValueListenableBuilder实现局部刷新功能

flutter开发实战-ValueListenableBuilder实现局部刷新功能 在创建的新工程中&#xff0c;点击按钮更新counter后&#xff0c;通过setState可以出发本类的build方法进行更新。当我们只需要更新一小部分控件的时候&#xff0c;通过setState就不太合适了&#xff0c;这就需要进行…

图解「差分」入门(“前缀和“ 到 “差分“ 丝滑过渡)

题目描述 这是 LeetCode 上的 「1094. 拼车」 &#xff0c;难度为 「中等」。 Tag : 「差分」、「前缀和」 车上最初有 capacity 个空座位&#xff0c;车只能向一个方向行驶&#xff08;不允许掉头或改变方向&#xff09;。 给定整数 capacity 和一个数组 trips, 表示第 i 次旅…

java: 警告: 源发行版 17 需要目标发行版 17

这是一个编译期的报错提示 源发行版 17 , 即说明你的maven项目当前指定的编译版本是jdk17&#xff0c;需要目标发行版 17则是说明你的idea中实际选择的jdk版本并非17 检查你项目中的pom文件中的配置 <properties><java.version>17</java.version><prop…

【渗透】记录阿里云CentOS一次ddos攻击

文章目录 发现防御 发现 防御 流量清洗 使用高防

2024年甘肃省职业院校技能大赛中职组 电子与信息类“网络安全”赛项竞赛样题-B卷

2024 年甘肃省职业院校技能大赛中职组 电子与信息类“网络安全”赛项竞赛样题-B卷 2024 年甘肃省职业院校技能大赛中职组 电子与信息类“网络安全”赛项竞赛样题-B卷A 模块基础设施设置/安全加固&#xff08;200 分&#xff09;A-1&#xff1a;登录安全加固&#xff08;Windows…

校园门禁可视化系统解决方案

随着科技的持续进步&#xff0c;数字化校园在教育领域中的地位日益上升&#xff0c;各种智能门禁、安防摄像头等已遍布校园各个地方&#xff0c;为师生提供安全便捷的通行体验。然而数据收集分散、缺乏管理、分析困难等问题也逐渐出现&#xff0c;在这个数字化环境中&#xff0…

Apache Flink(五):Apache Flink快速入门 - 环境准备及入门案例

&#x1f3e1; 个人主页&#xff1a;IT贫道_大数据OLAP体系技术栈,Apache Doris,Clickhouse 技术-CSDN博客 &#x1f6a9; 私聊博主&#xff1a;加入大数据技术讨论群聊&#xff0c;获取更多大数据资料。 &#x1f514; 博主个人B栈地址&#xff1a;豹哥教你大数据的个人空间-豹…

Yocto版本信息查询

文章目录 yocto官方发布版本当前版本完整版本信息yocto与内核版本对应 Yocto工程查找版本Yocto镜像查找版本启动串口打印系统配置 参考 yocto官方发布版本 当前版本 如下图所示&#xff0c;当前yocto的主要维护版本&#xff0c;几乎每年一年版本&#xff0c;当前为5.0版本 …

C语言之联合和枚举

C语言之联合和枚举 文章目录 C语言之联合和枚举1. 联合体1.1 联合体的声明1.2 联合体的特点1.3 结构体和联合体对比1.4 联合体大小的计算1.5 联合体小练习 2. 枚举2.1 枚举类型的声明2.2 枚举类型的优点2.3 枚举类型的使用 1. 联合体 1.1 联合体的声明 像结构体⼀样&#xff…

TZOJ 1429 小明A+B

答案&#xff1a; #include <stdio.h> int main() {int T0, A0, B0, sum0;scanf("%d", &T); //输入测试数据的组数while (T--) //循环T次{scanf("%d %d", &A, &B); //输入AB的值sum A B;if (sum > 100) //如果是三位数{…