Hdoop学习笔记(HDP)-Part.17 安装Spark2

目录
Part.01 关于HDP
Part.02 核心组件原理
Part.03 资源规划
Part.04 基础环境配置
Part.05 Yum源配置
Part.06 安装OracleJDK
Part.07 安装MySQL
Part.08 部署Ambari集群
Part.09 安装OpenLDAP
Part.10 创建集群
Part.11 安装Kerberos
Part.12 安装HDFS
Part.13 安装Ranger
Part.14 安装YARN+MR
Part.15 安装HIVE
Part.16 安装HBase
Part.17 安装Spark2
Part.18 安装Flink
Part.19 安装Kafka
Part.20 安装Flume

十七、安装Spark2

1.安装

添加Spark2服务
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
需要重启HDFS、YARN、MapReduce2、Hive、HBase等相关服务

2.取消kerberos对页面的认证

在CONFIGS->Advanced spark2-env下的content里,将下面内容加#注释掉

export SPARK_HISTORY_OPTS='-Dspark.ui.filters=org.apache.hadoop.security.authentication.server.AuthenticationFilter -Dspark.org.apache.hadoop.security.authentication.server.AuthenticationFilter.params="type=kerberos,kerberos.principal={{spnego_principal}},kerberos.keytab={{spnego_keytab}}"'

在这里插入图片描述
访问页面,http://hdp01.hdp.com:18081/
在这里插入图片描述

3.确认Spark on Yarn配置

查看/usr/hdp/3.1.5.0-152/spark2/conf/spark-env.sh

export HADOOP_HOME=${HADOOP_HOME:-/usr/hdp/3.1.5.0-152/hadoop}
export HADOOP_CONF_DIR=${HADOOP_CONF_DIR:-/usr/hdp/3.1.5.0-152/hadoop/conf}

/usr/hdp/3.1.5.0-152/hadoop-yarn/conf/yarn-site.xml

4.spark-shell交互式命令

每个Spark应用程序都需要一个Spark环境,这是Spark RDD API的主要入口点。Spark Shell提供了一个名为“sc”的预配置Spark环境和一个名为“spark”的预配置Spark会话。使用Spark Shell的时候,本身是预配置了sc,即SparkConf和SparkContext的,但是在实际使用编辑器编程过程中是需要设置这些配置的。

(1)启动

启动spark-shell

spark-shell --master local

在这里插入图片描述
正确界面如下:
在这里插入图片描述
(2)加载本地文件
通过预置sc加载本地文件

val textFile = sc.textFile("file:///root/wordcount_input")

val后面的是变量textFile,而sc.textFile()中的这个textFile是sc的一个方法名称,这个方法用来加载文件数据。这两个textFile不是一个东西,不要混淆。实际上,val后面的是变量textFile。
要加载本地文件,必须采用“file:///”开头的这种格式。执行上上面这条命令以后,并不会马上显示结果,因为,Spark采用惰性机制,只有遇到“行动”类型的操作,才会从头到尾执行所有操作。

textFile.first()

first()是一个“行动”(Action)类型的操作,会启动真正的计算过程,从文件中加载数据到变量textFile中,并取出第一行文本。屏幕上会显示很多反馈信息,这里不再给出,你可以从这些结果信息中,找到word.txt文件中的第一行的内容。
在这里插入图片描述
正因为Spark采用了惰性机制,在执行转换操作的时候,即使我们输入了错误的语句,spark-shell也不会马上报错,而是等到执行“行动”类型的语句时启动真正的计算,那个时候“转换”操作语句中的错误就会显示出来。
在这里插入图片描述

(3)变量回写到本地文件

将变量中的内容写回到本地文件/root/output中

val textFile = sc.textFile("file:///root/wordcount_input")
textFile.saveAsTextFile("file:///root/output")

上面的saveAsTextFile()括号里面的参数是保存文件的路径,不是文件名。saveAsTextFile()是一个“行动”(Action)类型的操作,所以,马上会执行真正的计算过程,从wordcount_input中加载数据到变量textFile中,然后,又把textFile中的数据写回到本地文件目录“/root/output”下面

ll /root/output/
cat /root/output/part-00000

在这里插入图片描述
(4)加载HDFS中文件
与加载本地文件类似

val textFile = sc.textFile("hdfs://hdp315/testhdfs/tenant1/wordcount_input")
textFile.first()

在这里插入图片描述

实验:Spark SQL-词频统计

(1)spark-shell方式

待统计文件为/root/wordcount_input

spark-shell --master local
val textFile = sc.textFile("file:///root/wordcount_input")
val wordCount = textFile.flatMap(line => line.split(" ")).map(word => (word, 1)).ruduceByKey((a,b) => a + b)
wordCount.collect()

在这里插入图片描述
textFile包含了多行文本内容,textFile.flatMap(line => line.split(" “))会遍历textFile中的每行文本内容,当遍历到其中一行文本内容时,会把文本内容赋值给变量line,并执行Lamda表达式line => line.split(” “)。line => line.split(” “)是一个Lamda表达式,左边表示输入参数,右边表示函数里面执行的处理逻辑,这里执行line.split(” "),也就是针对line中的一行文本内容,采用空格作为分隔符进行单词切分,从一行文本切分得到很多个单词构成的单词集合。这样,对于textFile中的每行文本,都会使用Lamda表达式得到一个单词集合,最终,多行文本,就得到多个单词集合。textFile.flatMap()操作就把这多个单词集合“拍扁”得到一个大的单词集合。
然后,针对这个大的单词集合,执行map()操作,也就是map(word => (word, 1)),这个map操作会遍历这个集合中的每个单词,当遍历到其中一个单词时,就把当前这个单词赋值给变量word,并执行Lamda表达式word => (word, 1),这个Lamda表达式的含义是,word作为函数的输入参数,然后,执行函数处理逻辑,这里会执行(word, 1),也就是针对输入的word,构建得到一个tuple,形式为(word,1),key是word,value是1(表示该单词出现1次)。
程序执行到这里,已经得到一个RDD,这个RDD的每个元素是(key,value)形式的tuple。最后,针对这个RDD,执行reduceByKey((a, b) => a + b)操作,这个操作会把所有RDD元素按照key进行分组,然后使用给定的函数(这里就是Lamda表达式:(a, b) => a + b),对具有相同的key的多个value进行reduce操作,返回reduce后的(key,value),比如(“hadoop”,1)和(“hadoop”,1),具有相同的key,进行reduce以后就得到(“hadoop”,2),这样就计算得到了这个单词的词频。

(2)spark-submit方式

建议找一台有外网的服务器来做sbt,因为需要下载很多依赖包
安装sbt

tar -zxvf /opt/sbt-1.8.2.tgz -C /usr/local/

将位于sbt/bin下面的sbt-launch.jar文件放在sbt目录下。
cp /usr/local/sbt/bin/sbt-launch.jar /usr/local/sbt/
在sbt目录下创建sbt脚本

chmod u+x /usr/local/sbt/sbt

确认是否成功

/usr/local/sbt/sbt sbtVersion

在这里插入图片描述
创建工程目录及相关文件
在这里插入图片描述
scala文件,/data01/project/wordcount/src/main/scala/wordcount.scala

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConfobject WordCount {def main(args: Array[String]) {val inputFile =  "hdfs://hdp315/testhdfs/ranger_yarn/wordcount_input"val conf = new SparkConf().setAppName("WordCount")val sc = new SparkContext(conf)val textFile = sc.textFile(inputFile)val wordCount = textFile.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey((a, b) => a + b)wordCount.foreach(println)}
}

sbt文件,/data01/project/wordcount/wordcount.sbt

name := "WordCount Project"version := "1.0"scalaVersion := "2.11.12"libraryDependencies += "org.apache.spark" %% "spark-core" % "2.3.0"

进入到工程目录下,将整个工程打成jar包

/usr/local/sbt/sbt package

在这里插入图片描述
jar包在工程目录下的./target/scala-2.11/下
在这里插入图片描述
回到hdp01上,通过spark-submit提交jar包执行

kinit -kt /root/keytab/ranger_yarn.keytab ranger_yarn
spark-submit --class "WordCount" /root/wordcount-project_2.11-1.0.jar --deploy-mode cluster --master yarn

在这里插入图片描述
查看结果
在spark中可以查看任务信息,已经结果
在这里插入图片描述
在这里插入图片描述

6.实验:Spark Streaming-显示实时流内容

将nc作为服务器端,用户产生数据;启动sparkstreaming客户端程序,监听服务器端发送过来的数据,并对其数据进行显示。
在测试的nc服务端,启动nc程序,端口为1234

nc -l 1234

配置sbt文件,增加sparking-streaming依赖包,/data01/project/streamPrint/streamPrint.sbt

name := "streamPrint Project"version := "1.0"scalaVersion := "2.11.12"libraryDependencies ++= Seq(
"org.apache.spark" %% "spark-core" % "2.3.0",
"org.apache.spark" %% "spark-streaming" % "2.3.0"
)

配置scala文件,/data01/project/streamPrint/src/main/scala/streamPrint.scala

import org.apache.spark._
import org.apache.spark.streaming._
import org.apache.spark.storage.StorageLevelobject StreamPrint {def main(args: Array[String]) {val conf = new SparkConf().setAppName("streamPrint")val sc = new StreamingContext(conf, Seconds(5))val lines = sc.socketTextStream("192.168.111.1", 1234, StorageLevel.MEMORY_AND_DISK)if (lines != null) {lines.print()println("start!")}sc.start()sc.awaitTermination()}
}

进入到工程目录下,将整个工程打成jar包

/usr/local/sbt/sbt package

回到hdp01上,通过spark-submit提交jar包执行

kinit -kt /root/keytab/ranger_yarn.keytab ranger_yarn
spark-submit --class "StreamPrint" /root/streamprint-project_2.11-1.0.jar --deploy-mode cluster --master yarn

此时在nc服务端输入内容后,可在spark streaming中看到相应的内容
在这里插入图片描述
在这里插入图片描述
Spark streaming中的间隔,是在scala程序中设置的,val sc = new StreamingContext(conf, Seconds(5))因此是5秒输出一次。

7.spark-submit参数

–master
master的地址,提交任务到哪里执行
常见的选项有
local:提交到本地服务器执行,并分配单个线程
local[k]:提交到本地服务器执行,并分配k个线程
spark://HOST:PORT:提交到standalone模式部署的spark集群中,并指定主节点的IP与端口
mesos://HOST:PORT:提交到mesos模式部署的集群中,并指定主节点的IP与端口
yarn:提交到yarn模式部署的集群中
–deploy-mode
在本地(client)启动driver或在cluster上启动,默认是client
DEPLOY_MODE:设置driver启动的位置,可选项如下,默认为client
client:在客户端上启动driver,这样逻辑运算在client上执行,任务执行在cluster上
cluster:逻辑运算与任务执行均在cluster上,cluster模式暂时不支持于Mesos集群或Python应用程序
–class
应用程序的主类,仅针对java或scala应用
CLASS_NAME:指定应用程序的类入口,即主类,仅针对java、scala程序,不作用于python程序
–name
应用程序的名称
–jars
用逗号分隔的本地jar包,设置后,jar包将包含在driver和executor的classpath下
–packages
包含在driver和executor的classpath中的jar的maven坐标
–exclude-packages
为了避免冲突,指定的参数–package中不包含的jars包
–repositories
远程repository
附加的远程资源库(包含jars包)等,可以通过maven坐标进行搜索
–py-files
PY_FILES:逗号隔开的的.zip、.egg、.py文件,这些文件会放置在PYTHONPATH下,该参数仅针对python应用程序
–files
FILES:逗号隔开的文件列表,这些文件将存放于每一个工作节点进程目录下
–conf PROP=VALUE
指定spark配置属性的值,格式为PROP=VALUE,例如–confspark.executor.extraJavaOptions=“-XX:MaxPermSize=256m”
–properties-file
指定需要额外加载的配置文件,用逗号分隔,如果不指定,默认为conf/spark-defaults.conf
–driver-memory
Driver内存,默认1G
–driver-java-options
传给driver的额外的Java选项
–driver-library-path
传给driver的额外的库路径
–driver-class-path
传给driver的额外的类路径,用–jars添加的jar包会自动包含在类路径里
–driver-cores
Driver的核数,默认是1。在yarn或者standalone下使用
–executor-memory
每个executor的内存,默认是1G
–total-executor-cores
所有executor总共的核数。仅仅在mesos或者standalone下使用
–num-executors
启动的executor数量。默认为2。在yarn下使用
–executor-core
每个executor的核数。在yarn或者standalone下使用

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/239162.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

专业视频剪辑利器Final Cut Pro for Mac,让你的创意无限发挥

在如今的数字时代,视频内容已经成为人们生活中不可或缺的一部分。无论是在社交媒体上分享生活点滴,还是在工作中制作专业的营销视频,我们都希望能够以高质量、高效率地进行视频剪辑和制作。而Final Cut Pro for Mac作为一款专业级的视频剪辑软…

CityEngine2023安装与快速入门

目录 0 引言1 安装2 基本操作3 CityEngine官方示例3.1 官方地址3.2 导入示例工程 3 结尾 🙋‍♂️ 作者:海码007📜 专栏:CityEngine专栏💥 标题:CityEngine2023安装与快速入门❣️ 寄语:书到用时…

22款奔驰S400L升级香氛负离子 车载香薰

香氛负离子系统是由香氛系统和负离子发生器组成的一套配置,也可以单独加装香氛系统或者是负离子发生器,香氛的主要作用就是通过香氛外壳吸收原厂的香水再通过空调管输送到内饰中,而负离子的作用就是安装在空气管中通过释放电离子来打击空气中…

postman参数为D:\\audio\\test.mp3请求报错

报错信息 报错 java.lang.IllegalArgumentException: Invalid character found in the request target [/v1/audio/transcriptions?audioPathD:\\audio\\test.mp3 ]. The valid characters are defined in RFC 7230 and RFC 3986 解决方式 yml文件上放行指定字符 relaxed-pa…

CentOS或RHEL安装code-server(vscode-web)

下载rpm安装包 网络下载或者下载到本地再上传到服务器,点击访问国内下载地址,不需要积分curl -fOL https://github.com/coder/code-server/releases/download/v4.19.1/code-server-4.19.1-amd64.rpm安装 rpm -i code-server-4.19.1-amd64.rpm关闭和禁用…

2022年4月12日 Go生态洞察:何时使用泛型 ️

🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…

【嵌入式Linux程序开发综合实验】-1(附流程图) | ARM开发板 | 测试“Hello World” | Makefile文件 | 实现加法相加

任务:编写在标准输出终端输出“Hello World!”的C语言代码以及输入指定数字相加结果、Makefile,并分别编译出在PC与ARM上运行的可执行程序文件。 设备以及工具 硬件:Linux开发板、PC机、串口连接线 图1 Linux开发板以及串口接线 …

LED屏幕信息安全如何预防?

随着科技的不断进步,LED屏幕在我们生活和工作中扮演着越来越重要的角色,然而,随之而来的是信息安全面临的挑战。为了有效预防LED屏幕信息的泄露和被盗取,我们需要采取一系列的安全措施。以下是一些建议: 物理安全措施&…

【 RTTI 】

RTTI 概念: RTTI(Run Time Type Identification)即通过运行时类型识别,程序能够使用基类的指针或引用来检 查着这些指针或引用所指的对象的实际派生类型。 原因: C是一种静态类 型语言。其数据类型是在编译期就确定的,不能在运…

【DPDK】Trace Library

概述 跟踪是一种用于了解运行中的软件系统中发生了什么的技术。用于跟踪的软件被称为跟踪器,在概念上类似于磁带记录器。记录时,放置在软件源代码中的特定检测点会生成保存在巨大磁带上的事件:跟踪文件。稍后可以在跟踪查看器中打开跟踪文件…

密码学学习笔记(二十二):RSA签名方案

在RSA中,计算公钥的欧拉函数和私钥是关键步骤。 如何计算呢? RSA算法中的是两个质数 p 和 q 的乘积。所以两个质数必须要找到。一旦找到 p 和 q就可以使用公式() (p-1) (q-1)来计算。 计算私钥d 私钥 d 是满足 e*d ≡ 1 mod   的整数。换句话说&a…

Android studio Load error:undefined path variables

android stuido 报错 Load error:undefined path variables Gson is undefined 处理方法: 点击进行Sync Project with Gradle Files