Verilog inout 端口使用和仿真

inout端口是Verilog中一种特殊的端口类型,它可以实现双向的数据传输,既可以作为输入,也可以作为输出。inout端口通常用于实现管脚复用、三态缓冲器、总线驱动等功能。inout端口的使用需要注意以下几个方面:

  • inout端口必须声明为wire类型,不能声明为reg类型,因为reg类型的变量不能被多个驱动源赋值,而inout端口可能会有多个驱动源。

  • inout端口必须使用assign语句来赋值,不能在always块中赋值,因为always块中的赋值会产生隐式的锁存器,而inout端口需要使用显式的三态门来控制。

  • inout端口的赋值必须使用三态表达式,即根据一个控制信号来选择输出一个具体的值或者高阻态。高阻态表示inout端口不输出任何值,而是作为输入使用。三态表达式的一般形式为:assign inout_port = control ? value : 1’bz; 其中control是一个布尔型的控制信号,value是一个具体的值,1’bz表示高阻态。高阻态时,inout 端口用作输入。

  • 可选的:inout端口作为输入时,必须有一个reg类型的缓冲变量来存储输入的值,不能直接使用inout端口的值。这样可以避免inout端口作为输出时,输出的值影响到输入的电路。缓冲变量的赋值也需要一个控制信号来控制,一般是在always块中使用if语句来实现。

下面是一个使用inout端口的Verilog代码的示例,该代码实现了一个简单的三态缓冲器,可以根据一个使能信号来选择输出一个输入信号或者高阻态。

// 协议解析状态机
module pt_fsm
(input	wire 			sys_clk		, // 系统时钟input	wire			sys_rst_n	, // 复位信号,低电平有效input   wire            data_flag	, // 数据有效标志,上升沿有效input	wire			rd_en		, // 上位机读取回复标志信号,低电平有效inout	wire	[7:0]	mcu_data		, // 输入数据output  reg		[31:0]  cmd_rcv		, // 接收到的一帧命令output  reg				cmd_flag	, // 命令有效标志。每接收到一帧命令,拉高一个时钟周期output  reg				led_out,output	reg		[31:0]	freq		  // 要设置的频率
);// inout 端口用作输入时为高阻态,用作输出时从相应的缓冲寄存器里取值
reg [7:0] mcu_data_reg; // inout 端口用作输出时的缓冲寄存器
reg dir; // dir=1 mcu_data 用于输出。dir=0时,高阻态,mcu_data 用于输入
assign mcu_data = (dir == 1) ? mcu_data_reg : 8'bz;// -----------------inout 端口 mcu_data 用作输入--------------------------
always@(posedge sys_clk or negedge sys_rst_n)if(sys_rst_n == 1'b0)beginstate <= IDLE;packet <= 32'd0;endelse case(state)IDLE:	if((data_flag_pos == 1'b1) && (mcu_data == 8'h55)) // 收到 0x55, 进入下一个状态beginstate <= ONE; packet[31:24] 	<= mcu_data;endelse 					// 没有收到数据,或者收到非 0x55 保持状态不变state <= IDLE;ONE:	if(data_flag_pos == 1'b1)// 收到任意字节数据,进入下一个状态beginstate <= TWO;packet[23:16] 	<= mcu_data; //保存接收到的数据endelse					state <= ONE;TWO:	if(data_flag_pos == 1'b1) 	// 收到任意字节数据,进入下一个状态beginstate <= THREE;packet[15:8] 	<= mcu_data;endelse					state <= TWO;THREE:	if(data_flag_pos == 1'b1) 	// 收到任意字节数据,进入下一个状态beginstate <= FOUR;packet[7:0]		<= mcu_data;endelse					state <= THREE;FOUR:   state <= IDLE;          // 直接进入空闲状态,不做任何操作, 该状态只维持一个时钟周期default: state <= IDLE;endcase// ---------------inout 端口 mcu_data 用作输出--------------------------
// 对输出数据进行赋值
always@(posedge sys_clk or negedge sys_rst_n)if(sys_rst_n == 1'b0)mcu_data_reg <= 8'h00;else if(rd_ne == 1'b1)case(res_cnt) // 根据情况,回复相应数据4'd0: mcu_data_reg <= cmd_rcv[31:24];4'd1: mcu_data_reg <= cmd_rcv[23:16];4'd2: mcu_data_reg <= cmd_rcv[16:8];4'd3: mcu_data_reg <= cmd_rcv[7:0];endcase

inout 端口仿真时和使用类似,首先,我们需要将inout端口声明为wire型,例化的时候与设计文件连接,其次,我们要分别模拟input和output的行为,读取的时间高阻态,发送的时间有相对应的值。下面是仿真代码:

`timescale 1ns/1ns
module tb_dds_ctrl();// 模拟产生三路信号
reg			sys_clk;
reg			sys_rst_n;
reg	[3:0]	wave_sel;
reg			wr; // 写使能,高电平有效
reg			rd_en; // 写使能,低电平有效wire [7:0]  dac_data;
wire		led_out;//因此我们没有办法在testbench中将其声明为inout端口,为了在testbench中体现inout,
//首先,我们需要将inout端口声明为wire型,例化的时候与设计文件连接,
//其次,我们要分别模拟input和output的行为,读取的时间高阻态,发送的时间有相对应的值,
wire	[7:0]	mcu_data; // bidirectional signal from DUT
reg		[7:0] 	mcu_data_drive; // locally driven value
reg dir;
assign mcu_data = (dir == 1'b1) ? mcu_data_drive : 8'hZZ;initialbegindir = 1'b1;sys_clk = 1'b1;sys_rst_n = 1'b0;wave_sel = 4'b0000;rd_en = 1'b1; // 拉高读信号,禁止读wr    = 1'b0; // 拉低写信号,禁止写//mcu_data_drive <= 8'h34;mcu_data_drive = 8'b0;#200 // 等待200个时间单位sys_rst_n = 1'b1; // 复位信号拉高#20wave_sel = 4'b0001; // 应该输出正弦波/* #8000000wave_sel <= 4'b0010; // 方波信号#8000000wave_sel <= 4'b0100; // 三角信号#8000000wave_sel <= 4'b1000; // 锯齿波信号#8000000wave_sel <= 4'b0000; // 最后信号回到初始值 */#100wr = 1'b0; // 先拉低,因为高电平有效#20 mcu_data_drive = 8'h55;#20wr = 1'b1; // 拉高写使能#20wr = 1'b0;#20 mcu_data_drive = 8'h01; // 发送第二个字节#20wr = 1'b1; // 拉高写使能#20wr = 1'b0;#20 mcu_data_drive = 8'h86; // 发送第三个字节#20wr = 1'b1; // 拉高写使能#20wr = 1'b0;#20 mcu_data_drive = 8'ha0; // 发送第四个字节#20wr = 1'b1; // 拉高写使能#20wr = 1'b0;//---------------------下面模拟接收#20dir = 1'b0; // 方向改为输出#100 // 模拟上位机开始读取回复rd_en = 1'b0;#30rd_en = 1'b1; // 拉高使能信号#20 // 读取第二个字节rd_en = 1'b0;#20rd_en = 1'b1;#20 // 读取第三个字节rd_en = 1'b0;#20rd_en = 1'b1;#20 // 读取第四个字节rd_en = 1'b0;#20rd_en = 1'b1;#20dir = 1'b1; // 方向改为输入// 在发送一个字节的数据,看看 inout 变量 mcu_data 接收是否正常#20 mcu_data_drive = 8'h55;#20wr = 1'b1; // 拉高写使能#20wr = 1'b0;end// 模拟产生 50MHz 是时钟信号
always #10 sys_clk = ~sys_clk;// 实例化要仿真的模块
dds_ctrl dds_ctrl_inst
(.sys_clk	(sys_clk), // 系统时钟.sys_rst_n	(sys_rst_n), // 复位信号.wave_sel	(wave_sel), // 波形选择信号.wr			(wr),.rd_en		(rd_en),.mcu_data	(mcu_data),  // inout 型端口.led_out	(led_out),.dac_data	(dac_data)	// 输出信号
);endmodule

下面是仿真波形:

 需要注意的时,同一个 inout 端口信号,只能在一个模块文件中使用,不能在多个仿真文件中使用,否则会出现仿真错误。这也导致一个问题,就是接收和发送不能分开处理,导致模块臃肿。

加作者薇信:jiyuyun18, 交流电子技术

留言:CSDN FPGA 入群,加入 FPGA 技术交流群

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/239411.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

海云安谢朝海:开发安全领域大模型新实践 人工智能助力高效安全左移

2023年11月29日&#xff0c;2023中国&#xff08;深圳&#xff09;金融科技大会成功举行&#xff0c;该会议是深圳连续举办的第七届金融科技主题年度会议&#xff0c;也是2023深圳国际金融科技节重要活动之一。做好金融工作&#xff0c;需要兼顾创新与安全&#xff0c;当智能体…

系列十七、理解SpringBoot中的starter 自定义一个starter

一、概述 作为后端Java程序员&#xff0c;基本上公司的日常开发都是基于SpringBoot进行的&#xff0c;我们使用SpringBoot也是沉醉于它的各种各样的starter带给我们的便利&#xff0c;这些starter为我们带来了众多的自动化配置&#xff0c;通过这些自动化配置&#xff0c;我们可…

mysql中除了InnoDB以外的其它存储引擎

参考资料&#xff1a;https://dev.mysql.com/doc/refman/8.0/en/storage-engines.html MyISAM存储引擎 https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html MyISAM 存储引擎是基于比较老的ISAM存储引擎&#xff08;ISAM已经不再可用&#xff09;&#xff…

[论文精读]利用大语言模型对扩散模型进行自我修正

本博客是一篇最新论文的精读&#xff0c;论文为UC伯克利大学相关研究者新近(2023.11.27)在arxiv上上传的《Self-correcting LLM-controlled Diffusion Models》 。 内容提要: 现有的基于扩散的文本到图像生成模型在生成与复杂提示精确对齐的图像时仍然存在困难,尤其是需要数值和…

前缀和 LeetCode1094 拼车

1094. 拼车 车上最初有 capacity 个空座位。车 只能 向一个方向行驶&#xff08;也就是说&#xff0c;不允许掉头或改变方向&#xff09; 给定整数 capacity 和一个数组 trips , trip[i] [numPassengersi, fromi, toi] 表示第 i 次旅行有 numPassengersi 乘客&#xff0c;接…

SATA模块物理层OOB信号分析总结(三)

目录 一、简介二、总体解析2.1 OOB作用2.2 OOB信号的组成2.3 总体phy link过程2.4 整体PHY LINK Trace2.5 PHY LINK状态查询 三、其他相关链接1、SATA模块之HBA卡开发总结&#xff08;一&#xff09;2、SATA信息传输FIS结构总结&#xff08;二&#xff09;3、PCIe物理层总结-PC…

什么是CAS, 什么是AQS

文章目录 什么是CAS, 什么是AQSCASAQS 什么是CAS, 什么是AQS CAS AQS AQS 全称是AbstractQueuedSynchronizer&#xff0c; 是juc 下一个核心的抽象类&#xff0c;用于构建各种同步器和锁 比如我们熟悉的 ReentrantLock、ReadWriteLock、CountDownLatch等等是基于AQS. 首先在…

大数据技术之Oozie

大数据技术之Oozie 第1章 Oozie简介 Oozie英文翻译为&#xff1a;驯象人。一个基于工作流引擎的开源框架&#xff0c;由Cloudera公司贡献给Apache&#xff0c;提供对Hadoop MapReduce、Pig Jobs的任务调度与协调。Oozie需要部署到Java Servlet容器中运行。主要用于定时调度任…

北邮22级信通院数电:Verilog-FPGA(12)第十二周实验(2)彩虹呼吸灯

北邮22信通一枚~ 跟随课程进度更新北邮信通院数字系统设计的笔记、代码和文章 持续关注作者 迎接数电实验学习~ 获取更多文章&#xff0c;请访问专栏&#xff1a; 北邮22级信通院数电实验_青山如墨雨如画的博客-CSDN博客 目录 一.代码部分 二.管脚分配 三.实验效果 一.代…

OBS Studio 30.0 正式发布:支持 WebRTC

导读OBS Studio 30.0 已正式发布。此版本移除了对 Ubuntu 20.04、Qt 5 和 FFmpeg 4.4 之前版本的支持。 OBS Studio 30.0 已正式发布。此版本移除了对 Ubuntu 20.04、Qt 5 和 FFmpeg 4.4 之前版本的支持。 主要变化包括&#xff1a; 支持 WebRTC&#xff08;详情查看 OBS Stu…

shell 脚本计算距离最近的坐标

shell 脚本计算距离最近的坐标 坐标数据文件geo.log格式如下&#xff1a; beijing(116.405285,39.904989) tinajin(117.190182,39.125596) hebei(114.502461,38.045474) shanxi(112.549248,37.857014) neimenggu(111.670801,40.818311) liaoning(123.429096,41.796767) jilin(1…

一线大厂Redis高并发缓存架构

场景1&#xff1a;秒杀库存场景&#xff0c; 10000人抢100个商品 如果用普通的分布式锁实现&#xff0c; 最后抢到的人&#xff0c;要等前面99个人抢完 优化方案&#xff1a;可用分段锁&#xff0c; 降低锁的粒度&#xff0c; 比如1-10库存用锁product:101_1,11-20库存用锁pr…