【C++ STL】vector类最全详解(什么是vector?vector类的常用接口有哪些?)

目录

一、前言

二、什么是vector ?

💦 vector的基本概念

💦vector的作用是什么

💦总结

三、 vector的(一维)定义

四、vector(一维)常用接口的使用

 💦vector的常见构造(初始化)

 💦vector的遍历及迭代器的操作

① operator[ ] 

② at ( ) 

③迭代器 

③ 范围for 

 💦vector的常见容量操作

① size

② capacity 

③ reserve(⭐)

④ resize(⭐)

⑤【reserve】和【resize】在使用中的易错点

⑥ empty

 💦vector的常见访问操作

 💦vector的常见修改操作

① push_back

② pop_back

③ insert

④ erase

⑤ swap

⑥ find

 五、共勉


一、前言

        最近在刷leetcode的时候,发现vector都还没弄明白吗,但是STL的强大是众所周知滴,早晚都是要解决滴,因此专门写下这篇文章,以供自己复习和各位老铁使用,快速的回忆vector的用法,让你找回自信,不用再竞赛的时候颜面尽失。
       本次博客主要讲解vector的一维用法,由于篇幅过长,vector的二维用法,下一篇博客来阐述,请大家持续关注我O!!

二、什么是vector ?

        向量(Vector)是一个封装了动态大小数组的顺序容器(Sequence Container)。跟任意其它类型容器一样,它能够存放各种类型的对象。可以简单的认为,向量是一个能够存放任意类型的动态数组。

💦 vector的基本概念

     Vector的数据安排以及操作方式,与array(数组)非常相似,两者的唯一差别在于空间的运用的灵活性。 

  • Array是静态空间,一旦配置了就不能改变,要换大一点或者小一点的空间,可以,一切琐碎得由自己来,首先配置一块新的空间,然后将旧空间的数据搬往新空间,再释放原来的空间。
  • Vector是动态空间,随着元素的加入,它的内部机制会自动扩充空间以容纳新元素。因此vector的运用对于内存的合理利用与运用的灵活性有很大的帮助,我们再也不必害怕空间不足而一开始就要求一个大块头的array(数组)了。

        Vector的实现技术,关键在于其对大小的控制以及重新配置时的数据移动效率,一旦vector旧空间满了,如果客户每新增一个元素,vector内部只是扩充一个元素的空间,实为不智,因为所谓的扩充空间(不论多大),一如刚所说,是”配置新空间-数据移动-释放旧空间”的大工程,时间成本很高,应该加入某种未雨绸缪的考虑,稍后我们便可以看到vector的空间配置策略。

 💦vector的作用是什么

        vector是C++标准模板库中的部分内容,中文偶尔译作“容器”,但并不准确。它是一个多功能的,能够操作多种数据结构和算法的模板类和函数库。vector之所以被认为是一个容器,是因为它能够像容器一样存放各种类型的对象,简单地说,vector是一个能够存放任意类型的动态数组,能够增加和压缩数据。

 💦总结

  1.  vector是表示可变大小数组的序列容器
  2. 就像数组一样vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理。
  3. 本质讲,vector使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,vector并不会每次都重新分配大小。
  4. vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。
  5. 因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长。
  6. 与其它动态序列容器相比(deque, list and forward_list), vector在访问元素的时候更加高效,在末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。比起list和forward_list统一的迭代器和引用更好

三、 vector的(一维)定义

        单独定义一个vector

vector<typename> name;

        上面这个定义其实相当于是一维数组name[size],只不过其size可以根据需要进行变化,这就是“变长数组”的名字的由来。
        这里的typename可以是任何基本类型,例如int、double、char、结构体等,也可以是STL标准容器,例如string、set、queue、vector等。
        注意:使用前必须加上头文件:

代码展示:

#include <iostream>
#include <vector>
using namespace std;
int main()
{int a[3];   // 正常定义的----静态数组vector<int> str_a;   // vector定义的----动态数组char b[3];vector<char> str_b;return 0;
}

效果展示:

四、vector(一维)常用接口的使用

 💦vector的常见构造(初始化)

接口名称接口说明
vector ();(⭐)无参构造(构造一个没有元素的空容器,size = 0
vector (size_type n, const value_type& val = value_type());构造一个包含 n 个元素的容器,元素值为 val
vector (const vector& x); (⭐)拷贝构造
template <class InputIterator> vector (InputIterator first, InputIterator last);(函数模板)使用迭代器进行初始化构造 [first,last)

注意: ⭐表示重点掌握

方式一: 构造一个某类型的空容器

vector<数据类型> 函数名; 初始化为空。

vector<int> v1; //构造int类型的空容器

方式二: 构造一个含有n个val的某类型容器:

vector<数据类型> 函数名(a,b).定义a个空间,都初始化为b。

vector<int> v2(10, 2); //构造含有10个2的int类型容器

方式三: 拷贝构造某类型容器的复制品:
vector<数据类型> 函数名1(函数名2),把动态数据2复制给动态数组1

vector<int> v3(v2); //拷贝构造int类型的v2容器的复制品

方式四: 使用迭代器拷贝构造某一段内容:
vector<数据类型> 函数名1(函数名2.begin(),函数名2.end())把动态数组2复制给动态数组1。

vector<int> v4(v2.begin(), v2.end()); //使用迭代器拷贝构造v2容器的某一段内容

方式五:迭代器构造函数也可以使用数组来进行构造,传的区间是左闭右开

vector<数据类型> 函数名(a,a+sizeof(a)/sizeof(数据类型)),把普通数组a复制给动态数组。

注意:该方式也可用于拷贝其他容器的某一段内容。

string s("hello world");
vector<char> v5(s.begin(), s.end()); //拷贝构造string对象的某一段内容

代码展示1(实用):

#include <iostream>
#include <vector>
using namespace std;
int main()
{std::vector<int> first;                               // 构造一个没有元素的空容器std::vector<int> second(2, 10);                       // 2个值为10的整数std::vector<int> third(second.begin(), second.end()); // 迭代器构造std::vector<int> fourth(third);                       // 拷贝构造// 迭代器构造函数也可以使用数组来进行构造,传的区间是左闭右开// 因为指向数组空间的指针是天然的迭代器int arr[] = { 16,2,77,29 };std::vector<int> fifth(arr, arr + 4);// std::vector<int> fifth (arr, arr + sizeof(arr) / sizeof(int) );// first : []// second: [10,10]// third : [10,10]// fourth: [10,10]// fifth : [16,2,77,29]return 0;
}

效果展示:



代码展示2(不实用):

void test2()
{// 用其它容器的迭代器初始化,只要数据d类型可以匹配上string s("hello");vector<char> v(s.begin(), s.end());for (auto& e : v){cout << e << " ";}cout << endl;
}

 💦vector的遍历及迭代器的操作

接口名称使用说明
operator[ ](

小标 + [ ]

at小标 + ( )
迭代器(begin()  + end()  或者  rbegin() + rend()
范围forC++11支持更简单的for的新遍历方式(底层还是借用迭代器实现)

注意: ⭐表示重点掌握

① operator[ ] 

       首先对于访问元素来说的话,最常见的还是 下标 + [ ] 的形式


代码展示

#include <iostream>
#include <vector>
using namespace std;int main()
{vector<int> v(5, 1);//使用“下标+[]”的方式遍历容器for (size_t i = 0; i < v.size(); i++){cout << v[i] << " ";}cout << endl;return 0;
}

效果展示:

② at ( ) 

  • 我们可以看到,使用at(下标)也是可以访问到对应元素的
  • 虽然这个接口并不是很常用,但是呢读者可以了解一下

代码展示:

int main()
{vector<int> v(5, 1);//使用“下标+()”的方式遍历容器for (size_t i = 0; i < v.size(); i++){cout << v.at(i) << " ";}cout << endl;return 0;
}

效果展示:

③迭代器 

接口名称使用说明
begin()返回指向第一个元素的迭代器
end()返回指向最后一个元素的下一个位置的迭代器
rbegin()返回指向最后一个元素的反向迭代器
rend()返回指向第一个元素的前一个位置的反向迭代器

 begin和end

  • 通过begin函数可以得到容器中第一个元素的正向迭代器,通过end函数可以得到容器中最后一个元素的后一个位置的正向迭代器。

正向迭代器遍历容器:

#include <iostream>
#include <vector>
using namespace std;int main()
{vector<int> v(10, 2);//正向迭代器遍历容器vector<int>::iterator it = v.begin();while (it != v.end()){cout << *it << " ";it++;}cout << endl;return 0;
}

rbegin和rend

  • 通过rbegin函数可以得到容器中最后一个元素的反向迭代器,通过rend函数可以得到容器中第一个元素的前一个位置的反向迭代器。

反向迭代器遍历容器:

#include <iostream>
#include <vector>
using namespace std;int main()
{vector<int> v(10, 2);//反向迭代器遍历容器vector<int>::reverse_iterator rit = v.rbegin();while (rit != v.rend()){cout << *rit << " ";rit++;}cout << endl;return 0;
}

③ 范围for 

如果支持迭代器的话,一定支持范围for

  • 马上来看看吧
int main()
{vector<int> v(2, 10);for (auto e : v){cout << e << " ";}cout << endl;return 0;
}

 💦vector的常见容量操作

容量空间接口说明
size返回容器中有效元素个数
capacity返回分配的存储容量大小(即有效元素的最大容量)
resize(调整容器的有效元素大小(size)
reserve(调整容器的容量大小(capacity)
empty判断容器是否为空

注意: ⭐表示重点掌握

① size

  • 首先的话来讲讲size(),其表示为当前容器中的数据个数
void test_vector6()
{vector<int> v(10, 1);cout << v.size() << endl;
}
  • 我们来看到这个执行结果,初始化时我们为容器中放入了10个1,那么其size即为10

② capacity 

  • 对于【capacity】来说,就是容量大小,这里可以看到其与capacity是一同增长的,也为10


  • 下面我们来看一下【vector】的默认扩容机制

下面是我们的测试代码

// 测试vector的默认扩容机制
void TestVectorExpand()
{size_t sz;vector<int> v;sz = v.capacity();cout << "making v grow:\n";for (int i = 0; i < 100; ++i){v.push_back(i);if (sz != v.capacity()){sz = v.capacity();cout << "capacity changed: " << sz << '\n';}}
}
  • 通过运行结果我们可以发现,在VS下的扩容机制是呈现 1.5 进行增长的,其STL是【P.J.版本】

  • 但是呢,在 Linux 下却始终是呈现的一个2倍的扩容机制,其STL是【SGI版本】

 ③ reserve(

  • 首先的话是【reserve】,它的主要功能是 开空间,避免频繁扩容

测试代码如下:

void TestVectorExpandOP()
{vector<int> v;size_t sz = v.capacity();v.reserve(100); // 提前将容量设置好,可以避免一遍插入一遍扩容cout << "making bar grow:\n";for (int i = 0; i < 100; ++i){v.push_back(i);if (sz != v.capacity()){sz = v.capacity();cout << "capacity changed: " << sz << '\n';}}
}

④ resize

  • 【resize】的功能则是 开空间 + 初始化,并且填上默认值
  • 这一块我们要通过调试来进行观察,首先看到没有resize的样子

  • 然后我们传递一个值进去看看,看到调试窗口中的size发生了变化,而且新增了3个为0的数据值
v.resize(3);

 ⑤【reserve】和【resize】在使用中的易错点

  • 接下去请读者观察一下下面这段代码,然后看看其中有什么问题?
void test_vector8()
{vector<int> v1;v1.reserve(10);		for (size_t i = 0; i < 10; i++){v1[i] = i;	}
}
  • 然后我将程序运行起来,发现报出了错误❌


💬 有同学说:感觉这代码也没什么错呀?怎么会有错误呢?

  •  大家要关注前面的reserve(10),我们在上面说到对于【reserve】而言只是做的扩容而已,只变化capacity而不会变化size
  • 另一点,对于v1[i]我们上面在讲元素访问的时候有说到过,这是下标 + []的访问形式,在出现问题的时候会直接给出断言错误。因为这里我们在【reserve】的时候只是开出了指定的空间,但size还是为0,此时去访问的时候肯定就出错了


正确的改进方法应该是像下面这样的:

  • 如果我们要使用下标 + [] 的形式去访问元素的话,就需要开出合适的size大小,才能在访问的时候不会造成越界问题
vector<int> v2;
v2.resize(10);
for (size_t i = 0; i < 10; i++)
{v2[i] = i;
}
  • 我们通过调试来观察一下吧

  • 或者呢,我们也可以写成下面这种形式。如果有同学还是要使用【reserve】的话就不要使用下标 + [] 的形式了,而是使用【push_back】的方式去不断尾插数据,因为在不断尾插的过程中就会去做一个扩容,这一点马上就会讲到
  • 同样,我们通过调试来看看

⑥ empty

  • 再来看看【empty】接口,当一开始进在初始化后是为空,但是在插入数据后就不为空了

  • 当size为 0 时,返回 1 
  • 当size为 非0 时,返回 0

 💦vector的常见访问操作

接口名称接口说明
back返回容器中最后的一个元素的引用
front返回容器中第一个元素的引用

代码测试:

int main()
{int a[5] = { 1,2,3,4,5 };vector<int> v(a, a+5);cout << v.back() << endl;cout << v.front() << endl;return 0;
}

 效果展示:

 💦vector的常见修改操作

接口名称接口说明
push_back(⭐)在末尾添加一个元素,有效元素个数加1

pop_back(⭐)

删除最后一个元素,有效元素个数减1
insert在指定迭代器位置的元素之前插入新元素来扩展容器
erase从容器中删除单个元素,或一系列元素(迭代器区间[first,last])
swap交换两个容器的内容
find查找(注意:这个是算法模块实现,不是vector的成员接口)

① push_back

这个接口的功能很明确,就是在尾部插入数据

代码测试:

int main()
{vector<int> v;for (int i = 0; i < 5; i++){v.push_back(i);}for (auto ch : v){cout << ch << " ";}cout << endl;return 0;
}

效果展示:

② pop_back

对于【pop_back】来说,很明显就是去尾删最后一个元素
 


代码测试:

int main()
{vector<int> v(5, 2);for (auto ch : v){cout << ch << " ";}cout << endl;for (int i = 0; i < 5; i++){v.pop_back();}for (auto ch : v){cout << ch << " ";}cout << endl;return 0;
}

效果展示:

③ insert

        对于【insert】这个接口来说,重载的方法有很多,读者可以自己下去都试试看,我这里只讲解前两个常用的。

测试代码:

int main()
{int a[] = { 1,2,3,4,5 };vector<int> v(a, a + 5);// 在第一个位置插入一个 0v.insert(v.begin(), 0);for (auto ch : v){cout << ch << " ";}cout << endl;// 在最后一个位置插入2个 6v.insert(v.end(), 2, 6);for (auto ch : v){cout << ch << " ";}cout << endl;return 0;
}

效果展示:

④ erase

有插入,那一定有删除,我们来看看【erase】

  • 这里看到有两个重载形式,一个是传递迭代器,另一个则是传递迭代器区间

代码测试:

int main()
{vector<int> v;for (int i = 0; i < 6; i++){v.push_back(i);}// 删除指定位置的元素v.erase(v.begin());for (auto ch : v){cout << ch << " ";}cout << endl;// 删除指定区间的元素v.erase(v.begin(), v.begin() + 2);for (auto ch : v){cout << ch << " ";}cout << endl;return 0;
}

效果展示:

⑤ swap

swap 函数介绍:用 x 的内容交换当前容器的内容,x 是同类型的另一个对象。两个容器大小可能不同。

iterator insert (iterator position, const value_type& val); // 插入单个元素
// 传值传参,形参改变不会影响实参


代码测试:

int main()
{vector<int> v1(5, 2);vector<int> v2(6, 3);swap(v1, v2);for (auto ch : v1){cout << ch << " ";}cout << endl;return 0;
}

效果展示:

⑥ find

       其实对于这个接口而言,是封装在了 <algorithm> 这个头文件中,称作是一种算法

  • 我们一起来看看具体的文档是怎么说的

  • 有了它相助后,我们要去删除一个指定的数据就容易多了,传入指定的搜索区间和要查找的值,若是返回的迭代器位置没有到达末尾的话,代表找到了这个值,我们去删除这个迭代器即可

代码测试:

int main()
{int a[] = { 1,2,3,4,5,1,2,5,8,6 };vector<int> v(a, a + 10);vector<int>::iterator pos = find(v.begin(), v.end(), 9);if (pos != v.end()){v.erase(pos);}for (auto ch : v){cout << ch << " ";}cout << endl;return 0;
}

效果展示:

 五、共勉

        以下就是我对【C++ STL】vector容器的理解,如果有不懂和发现问题的小伙伴,请在评论区说出来哦,同时我还会继续更新对C++STL库的理解,请持续关注我哦!!! 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/247009.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python处理pdf中二维码图片,批量生成图片

比如一种pdf页面上有很多二维码&#xff0c;这些二维码比如是用于停车的&#xff0c;每次打开pdf截图或者其他模式存下来&#xff0c;然后扫码使用是不是感觉很麻烦&#xff0c;可以使用python把每个二维码生成图片&#xff0c;然后保存起来使用&#xff0c;当然想方便的话还可…

配置攻击防范示例

1、组网需求。 如果局域网内存在Hacker向SwitchA发起畸形报文攻击、分片报文攻击和泛洪攻击&#xff0c;将会造成SwitchA瘫痪。为了预防这种情况&#xff0c;管理员希望通过在SwitchA上部署各种攻击防范措施来为用户提供安全的网络环境&#xff0c;保障正常的网络服务。 2、配…

奥本海默-电影剧情简介

片头&#xff0c;奥本海默 脑海浮现恒星生命周期画面 1925年&#xff0c;奥本海默离开美国去欧洲学习新物理&#xff08;量子力学&#xff09; 脑海浮现量子力学相关画面&#xff08;像 德布罗意波&#xff09; 1927年从德国哥廷根大学毕业&#xff0c;获得物理学博士学位。…

ssm农业信息管理系统源码和论文

摘 要 网络的广泛应用给生活带来了十分的便利。所以把农业信息管理与现在网络相结合&#xff0c;利用java技术建设农业信息管理系统&#xff0c;实现农业信息管理的信息化。则对于进一步提高农业信息管理发展&#xff0c;丰富农业信息管理经验能起到不少的促进作用。 农业信息…

二极管:二极管的基本原理

一、认识导体、绝缘体、半导体 什么是导体&#xff1f; 导体 conductor &#xff0c;是指电阻率很小&#xff0c;且容易传导电流的物质。导体中存在大量可自由移动的带电粒子&#xff0c;也称为载流子。在外电场的作用下&#xff0c;载流子作定向运动&#xff0c;形成电流。 …

【Linux】进程控制--进程创建/进程终止/进程等待/进程程序替换/简易shell实现

文章目录 一、进程创建1.fork函数2.fork函数返回值3.写时拷贝4.fork常规用法5.fork调用失败的原因 二、进程终止1.进程退出码2.进程退出场景3.进程常见退出方法 三、进程等待1.为什么要进行进程等待2.如何进行进程等待1.wait方法2.waitpid方法3.获取子进程status4.进程的阻塞等…

Nginx 简单入门操作

前言:之前的文章有些过就不罗嗦了。 Nginx 基础内容 是什么? Nginx 是一个轻量级的 HTTP 服务器,采用事件驱动、异步非阻塞处理方式的服务器,它具有极好的 IO 性能,常用于 HTTP服务器(包含动静分离)、正向代理、反向代理、负载均衡 等等. Nginx 和 Node.js 在很多方…

Android Studio的笔记--String和byte[]

String和byte[]的相互转换&#xff0c;字节数组转换 String转换byte[]文本16进制字节数组 byte[]转换String文本16进制 其它 String转换byte[] 文本 将字符串&#xff08;String&#xff09;转换为字节&#xff08;byte&#xff09;的方法。默认使用的是UTF-8编码 StandardCh…

全屏显示功能

全屏显示功能 screenfull 依赖下载 yarn add screenfull --save-dev使用 <template><!-- 全屏的字体图标 --><header><i class"iconfont icon-quanping"> </i></header> </template> <script> import screenfull …

【Unity动画】状态机添加参数控制动画切换(Animator Controller)

Unity - 手册&#xff1a;动画参数 在Unity中&#xff0c;动画状态的切换是通过Animator Controller中的过渡&#xff08;Transition&#xff09;来实现的。过渡是状态之间的连接&#xff0c;控制过渡一般都是靠调用代码参数 我们来实现一个案例&#xff1a; 创建动画状态机&a…

练习十二:利用SRAM设计一个FIFO

利用SRAM设计一个FIFO 1&#xff0c;任务目的2&#xff0c;设计要求3&#xff0c;FIFO接口的设计思路4&#xff0c;FIFO接口的测试&#xff0c;top.v5&#xff0c;FIFO接口的参考设计&#xff0c;fifo_interface.v6&#xff0c;SRAM模型&#xff0c;sram.v代码7&#xff0c;viv…

MySQL笔记-第06章_多表查询

视频链接&#xff1a;【MySQL数据库入门到大牛&#xff0c;mysql安装到优化&#xff0c;百科全书级&#xff0c;全网天花板】 文章目录 第06章_多表查询1. 一个案例引发的多表连接1.1 案例说明1.2 笛卡尔积&#xff08;或交叉连接&#xff09;的理解1.3 案例分析与问题解决 2. …