AI并行计算:CUDA和ROCm

1 介绍

1.1 CUDA

CUDA(Compute Unified Device Architecture)是Nvidia于2006年推出的一套通用并行计算架构,旨在解决在GPU上的并行计算问题。其易用性和便捷性能够方便开发者方便的进行GPU编程,充分利用GPU的并行能力,可以大幅提高程序的性能。目前CUDA已成为GPU加速计算的事实标准。

自从CUDA诞生以来,CUDA生态系统也迅速的发展,包括了大量的软件开发工具、服务和解决方案。CUDA Toolkit包括了库、调试和优化工具、编译器和运行时库。

CUDA特点:

  • 专有性:CUDA仅适用于NVIDIA的GPU。

  • 成熟度:CUDA拥有广泛的应用案例,被广泛应用于学术研究和工业界。

  • 生态系统:CUDA有一个成熟且广泛的生态系统,包括深度学习框架(如TensorFlow和PyTorch)、科学计算库和多种工具。

1.2 ROCm

AMD ROCm是Radeon Open Compute (platform)的缩写,是2015年AMD公司为了对标CUDA生态而开发的一套用于HPC和超大规模GPU计算提供的开源软件开发平台,ROCm只支持Linux平台。

同样ROCm包含一些列的开发工具、软件框架、库、编译工具、编程模型等。

ROCm特点:

  • 开放性:作为一个开源项目,ROCm旨在提供一个跨供应商的GPU计算解决方案。

  • 兼容性:主要支持AMD的GPU,但也在向其他厂商的硬件开放。

  • 生态系统:虽然相对较新,但正在迅速发展,支持包括TensorFlow和PyTorch在内的多个深度学习框架。

2 CUDA和ROCm对比

2.1 编程模型和API

NVIDIA

AMD

功能描述

CUDA

HIP

为C/C++开发GPU加速程序提供全面的环境,API、Runtime、编译器、调试工具等。

OpenCL

OpenCL

面向异构系统通用目的并行编程的开放式、免费标准,也是一个统一的编程环境,便于软件开发人员为高性能计算服务器、桌面计算系统、手持设备编写高效轻便的代码,

OpenACC

并行计算指令,研究人员和技术程序员最常用的GPU并行编程模型。

OpenMP

OpenMP是一套编译器指令、库例程和环境变量的规范,可用于指定Fortran和C/C++程序中的高级并行性。

2.2 编译及工具链

NVIDIA

AMD

功能描述

NVCC

ROCmCC / HCC

编译器

CUDA-GDB

ROCgdb

debug工具

HIPify

将CUDA原生代码转换为HIP原生c++代码

Nvidia Nsight

ROCm Profiling Tools

性能分析工具

nvidia-smi

rocm-msi

系统管理界面和命令行界面的工具

2.3 GPU加速库

CUDA和ROCm的基础框架提供众多的支持库,包括基础数学库、AI支持库、通信库、并行库等一些列,下面将列出来做个对照:

  • 数学库

NVIDIA

AMD

功能描述

cuBLAS

rocBLAS

基本线性代数库(basic linear algebra,BLAS)

cuFFT

rocFFT

快速傅里叶变换库(Fast Fourier Transforms)

CUDA Math Library

标准数学函数库

cuRAND

随机数生成(random number generation,RNG)

cuSOLVER

rocSOLVER

密集和稀疏直接求解器

cuSPARSE

rocSPARSE / rocALUTION

稀疏矩阵BLAS

cuTENSOR

rocWMMA

张量线性代数库

AmgX

用于模拟和隐式非结构化方法线性解算器

  • 并行算法库

NVIDIA

AMD

功能描述

Thrust

Parallel STL / rocThrust

C++并行算法和数据结构库

  • 图像和视频库

NVIDIA

AMD

功能描述

nvJPEG

用于JPEG解码的高性能GPU加速库

Nvidia Performance Primitive

提供GPU加速的图像、视频和信号处理功能

Nvidia Video Codec SDK

硬件加速视频编码和解码的一整套API、示例和文档网址:yii666.com<

  • 通信库

NVIDIA

AMD

功能描述

NVSHMEM

OpenSHMEM标准的GPU内存,具有扩展以提高GPU性能。

NCCL

RCCL

多GPU、多节点通信

  • 深度学习/人工智能库

Nvidia

AMD

  • cuDNN:深度神经网络基元库

  • TensorRT:用于生产部署的高性能深度学习推理优化器和运行时

  • Nvidia Riva:用于开发交互式情景AI会话应用的平台

  • Nvidia DeepStream SDK:用于基于AI的视频理解和多传感器处理的实时流分析工具包

  • Nvidia DLI:用于解码和增强图像和视频以加速深度学习应用的便携式开源库

  • MIOpen:AMD的深度学习基元库,提供不同运算符的高度优化和手动调整实现,如卷积、批量归一化、池化、softmax、激活和递归神经网络(RNN)层,用于训练和推理。

  • MIGraphX:AMD的图形推理引擎,可加速机器学习模型推理。AMD MIGraphX可以通过直接安装二进制文件或从源代码构建来使用。

  • MIVisionX:MIVisionX工具包是一套全面的计算机视觉和机器智能库、实用程序和应用程序,捆绑在一个工具包中。AMD MIVisionX提供高度优化的Khronos OpenVX™和OpenVX™扩展的开源实现沿着支持ONNX和Khronos NNEF™交换格式的卷积神经网络模型编译器和优化器。

2.4 开发工具

Nvidia

AMD

  • Nvidia DCGM:数据中心管理

  • nvidia-smi:系统管理界面和命令行界面的工具

  • Nvidia Nsight:调试和性能分析工具

  • ROCm Data Center Tools:数据中心环境中AMD GPU的管理

  • rocm-smi:系统管理界面和命令行界面的工具

  • ROCm Profiling Tools:性能分析工具

  • ROCmDebugger:调试工具

3 总结

CUDA和ROCm对比总结如下:

  • 硬件支持: CUDA专注于NVIDIA的GPU,而ROCm更注重提供跨平台的支持,尽管目前主要针对AMD的GPU。

  • 开放性: ROCm作为一个开源项目,更加开放和灵活,而CUDA是NVIDIA的专有技术。

  • 生态系统和成熟度: CUDA拥有更成熟的生态系统和更广泛的应用案例。相比之下,ROCm还在发展中,但正在迅速成长。

  • 性能: 性能方面,CUDA和ROCm都能提供优秀的计算能力,但具体表现会根据应用场景和硬件配置而有所不同。

CUDA和ROCm都是用于高性能计算的平台,特别是在GPU加速的情况下。它们提供了工具和库,使得开发者能够有效地利用GPU来加速计算密集型任务,选择CUDA还是ROCm主要取决于业务的特定需求、所使用的硬件以及对开放性的偏好。CUDA在高性能计算领域更加成熟和普遍,但如果你使用AMD的硬件或者更倾向于使用开源技术,ROCm是一个不断增长的选择。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/257397.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(使用vite搭建vue3项目(vite + vue3 + vue router + pinia + element plus))

使用vite搭建vue3项目&#xff08;vite vue3 vue router pinia element plus&#xff09; 初始化项目安装依赖&#xff0c;运行项目初始配置 初始化项目 1.需要在创建项目的位置cmd目录下执行 2. npm init vitelatest 回车 npm init vitelatest3.填上自己的项目名称 回车…

ELK(三)—安装可视化工具

目录复制 目录 一、ElasticSearch-Head可视化工具介绍1.1特性&#xff1a;1.2用法&#xff1a; 二、安装2.1docker安装2.2Chrome插件安装 一、ElasticSearch-Head可视化工具介绍 ElasticSearch-Head 是一个基于浏览器的 Elasticsearch 可视化工具&#xff0c;它提供了一个直观…

JSON字符串转泛型对象

JSON字符串转泛型对象 以下问题只仅限于博主自身遇到&#xff0c;不代表绝对出现问题 相关类展示&#xff1a; 参数基类 public class BaseParams { }基类 public abstract class AbstractPush<Params extends BaseParams> {protected abstract void execute(Params…

mysql数据库中int字段长度,即int(1)和int(10)的区别

1.起因 为什么想起来看这个问题&#xff0c;是最近有同事问mysql的init类型的字段长度的问题&#xff0c;他问int(1)和int(10)是什么意思&#xff0c;是字段长度越大&#xff0c;能存储的数字越大么&#xff1f;咋一问&#xff0c;还有点懵&#xff0c;从惯性思维来看&#xf…

论文分享 | 基于机载单目视觉的四旋翼无人机群内相对定位

阿木实验室推出的开源项目校园赞助活动&#xff0c;再次迎来开发者参与&#xff01; 国防科技大学电子对抗学院司晓坤同学&#xff0c;在Prometheus开源仿真架构的基础上进行了二次开发&#xff0c;且使用Prometheus 450&#xff08;P450&#xff09;进行了真机实验并发表了相…

12月8日星期五今日早报简报微语报早读

12月8日星期五&#xff0c;农历十月廿六&#xff0c;早报微语早读。 1、广东男篮官宣&#xff1a;易建联9号球衣退役12月29日 正好首秀21周年&#xff1b; 2、2024届全国普通高校毕业生规模预计达1179万人&#xff1b; 3、国务院&#xff1a;严禁新增钢铁产能 严格合理控制煤…

leetcode面试经典150题——35 螺旋矩阵

题目&#xff1a; 螺旋矩阵 描述&#xff1a; 给你一个 m 行 n 列的矩阵 matrix &#xff0c;请按照 顺时针螺旋顺序 &#xff0c;返回矩阵中的所有元素。 示例&#xff1a; 输入&#xff1a;matrix [[1,2,3],[4,5,6],[7,8,9]] 输出&#xff1a;[1,2,3,6,9,8,7,4,5] 提示&…

Linux centos8安装JDK1.8、tomcat

一、安装jdk 1.如果之前安装过jdk&#xff0c;先卸载掉旧的 rpm -qa | grep -i jdk 2.检查yum中有没有java1.8的包 yum list java-1.8* 3.yum安装jdk yum install java-1.8.0-openjdk* -y 4.验证 二、安装tomcat Index of /tomcat 可以在这里选择你想要安装的tomcat版本…

学习设计模式的一个好网址

常用设计模式有哪些&#xff1f; (refactoringguru.cn)https://refactoringguru.cn/design-patterns

统信UOS_麒麟KYLINOS安装奇安信并自动配置服务器IP端口号

往期好文&#xff1a;麒麟iso镜像中GRUB字体大小怎么改&#xff1f; hello&#xff0c;大家好啊&#xff0c;今天我要给大家介绍的是在统信UOS或者麒麟KYLINOS操作系统上安装奇安信网神终端管理系统&#xff0c;并通过自动配置IP及端口号来简化管理流程的方法。这种配置主要通过…

Linux-实现小型日志系统

目录 一.日志 二.实现任意个数元素求和 三.编写一个日志函数 1.设置日志等级 2.设置日志时间 3.设置日志的打印格式 4.将日志的内容输出到文件 一.日志 日志等级&#xff0c;日志时间&#xff0c;日志内容&#xff0c;文件的名称和行号 日志等级…

UEFI下Windows10和Ubuntu22.04双系统安装图解

目录 简介制作U盘启动盘并从U盘启动电脑安装系统安装Windows系统安装Ubuntu 附录双系统时间不一致 简介 传统 Legacy BIOS主板下的操作系统安装可参考本人博客 U盘系统盘制作与系统安装&#xff08;详细图解&#xff09; &#xff0c;本文介绍UEFI主板下的双系统安装&#xff…