卷积神经网络中用1*1 卷积有什么作用或者好处呢?

一、来源:[1312.4400] Network In Network (如果1×1卷积核接在普通的卷积层后面,配合激活函数,即可实现network in network的结构)

二、应用:GoogleNet中的Inception、ResNet中的残差模块

三、作用:

1、降维(减少参数)

例子1 : GoogleNet中的3a模块

输入的feature map是28×28×192

1×1卷积通道为64

3×3卷积通道为128

5×5卷积通道为32

左图卷积核参数:192 × (1×1×64) +192 × (3×3×128) + 192 × (5×5×32) = 387072

右图对3×3和5×5卷积层前分别加入了通道数为96和16的1×1卷积层,这样卷积核参数就变成了:

192 × (1×1×64) +(192×1×1×96+ 96 × 3×3×128)+(192×1×1×16+16×5×5×32)= 157184

同时在并行pooling层后面加入1×1卷积层后也可以降低输出的feature map数量(feature map尺寸指W、H是共享权值的sliding window,feature map 的数量就是channels)

左图feature map数量:64 + 128 + 32 + 192(pooling后feature map不变) = 416 (如果每个模块都这样,网络的输出会越来越大)

右图feature map数量:64 + 128 + 32 + 32(pooling后面加了通道为32的1×1卷积) = 256

GoogLeNet利用1×1的卷积降维后,得到了更为紧凑的网络结构,虽然总共有22层,但是参数数量却只是8层的AlexNet的十二分之一(当然也有很大一部分原因是去掉了全连接层)

例子2:ResNet中的残差模块

假设上一层的feature map是w*h*256,并且最后要输出的是256个feature map

左侧操作数:w*h*256*3*3*256 =589824*w*h

右侧操作数:w*h*256*1*1*64 + w*h*64*3*3*64 +w*h*64*1*1*256 = 69632*w*h,,左侧参数大概是右侧的8.5倍。(实现降维,减少参数)

2、升维(用最少的参数拓宽网络channal)

例子:上一个例子中,不仅在输入处有一个1*1卷积核,在输出处也有一个卷积核,3*3,64的卷积核的channel是64,只需添加一个1*1,256的卷积核,只用64*256个参数就能把网络channel从64拓宽四倍到256。

3、跨通道信息交互(channal 的变换)

例子:使用1*1卷积核,实现降维和升维的操作其实就是channel间信息的线性组合变化,3*3,64channels的卷积核后面添加一个1*1,28channels的卷积核,就变成了3*3,28channels的卷积核,原来的64个channels就可以理解为跨通道线性组合变成了28channels,这就是通道间的信息交互。

注意:只是在channel维度上做线性组合,W和H上是共享权值的sliding window

4、增加非线性特性

1*1卷积核,可以在保持feature map尺度不变的(即不损失分辨率)的前提下大幅增加非线性特性(利用后接的非线性激活函数),把网络做的很deep。

备注:一个filter对应卷积后得到一个feature map,不同的filter(不同的weight和bias),卷积以后得到不同的feature map,提取不同的特征,得到对应的specialized neuro。

四、从fully-connected layers的角度来理解1*1卷积核

将其看成全连接层

左边6个神经元,分别是a1—a6,通过全连接之后变成5个,分别是b1—b5

左边6个神经元相当于输入特征里面的channels:6

右边5个神经元相当于1*1卷积之后的新的特征channels:5

左边 W*H*6 经过 1*1*5的卷积核就能实现全连接。

In Convolutional Nets, there is no such thing as “fully-connected layers”. There are only convolution layers with 1x1 convolution kernels and a full connection table– Yann LeCun

参考:https://iamaaditya.github.io/2016/03/one-by-one-convolution/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/258267.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AWS KeyPair密钥格式转换PPK<>PEM

概述说明 PEM(Privacy Enhanced Mail)和PPK(Putty Private Key)都是与加密和安全相关的文件格式,通常用于存储私钥信息。它们在不同的上下文中使用,并且与不同的软件和协议相关联。 PEM(Priva…

linux高级篇基础理论七(Tomcat)

♥️作者:小刘在C站 ♥️个人主页: 小刘主页 ♥️不能因为人生的道路坎坷,就使自己的身躯变得弯曲;不能因为生活的历程漫长,就使求索的 脚步迟缓。 ♥️学习两年总结出的运维经验,以及思科模拟器全套网络实验教程。专栏:云计算技…

Java编程中通用的正则表达式(二)

正则表达式,又称正则式、规则表达式、正规表达式、正则模式或简称正则,是一种用来匹配字符串的工具。它是一种字符串模式的表示方法,可以用来检索、替换和验证文本。正则表达式是一个字符串,它描述了一些字符的组合,这…

高精度加法,减法,乘法,除法(下)(C语言)

前言 上一篇博客我们分享了高精度加法,减法,这一期我将为大家讲解高精度乘法和高精度除法。那让我们开始吧! 对加法和减法感兴趣的话就点我 文章目录 1,乘法2,除法3,尾声 1,乘法 让我们想想我们平时做数学…

【Linux系统化学习】进程地址空间 | 虚拟地址和物理地址的关系

个人主页点击直达:小白不是程序媛 Linux专栏:Linux系统化学习 代码仓库:Gitee 目录 虚拟地址和物理地址 页表 进程地址空间 进程地址空间存在的意义 虚拟地址和物理地址 我们在学习C/C的时候肯定都见过下面这张有关于内存分布的图片&a…

人体关键点检测1:人体姿势估计数据集

人体关键点检测1:人体姿势估计数据集 目录 人体关键点检测1:人体姿势估计数据集 1.人体姿态估计 2.人体姿势估计数据集 (1)COCO数据集 (2)MPII数据集 (3)Human3.6M &#xf…

微软发布Orca2,“调教式”教会小规模大语言模型如何推理!

我们都知道在大多数情况下,语言模型的体量和其推理能力之间存在着正相关的关系:模型越大,其处理复杂任务的能力往往越强。 然而,这并不意味着小型模型就永远无法展现出色的推理性能。最近,奶茶发现了微软的Orca2公开了…

vertica主键列能插入重复值的处理办法

问题描述 开发同事反馈在vertica中创建含主键列的表中插入重复数据时没有进行校验,插入重复值成功。经过测试着实可以插入重复值,这个坑有些不一样。 创建表和插入语句如下: --创建表 CREATE TABLE dhhtest(ID VARCHAR(64) PRIMARY KEY );…

MeteoInfo-Java解析与绘图教程

MeteoInfo-Java解析与绘图教程(四) 上文我们说到,将地图叠加在色斑图上,但大部分都是卫星绘图,现在开始讲解micaps数据绘图,同样也是更多自定义 配置 首先我们解析micaps数据,将之前学到的东西拿过来绘图 MeteoDataInfo meteoDataInfo new MeteoDataInfo(); meteoDataInfo.o…

hadoop-3.3.5安装过程

准备资源三台虚拟机: 1)准备3台服务器(关闭防火墙、静态IP、主机名称) 2)安装JDK 3)配置环境变量 4)安装Hadoop 5)配置环境变量 安装虚拟机(略)--1台即…

【推荐系统】推荐算法数学基础

【大家好,我是爱干饭的猿,本文重点介绍推荐系统涉及的数学知识、推荐系统涉及的概率统计知识。 后续会继续分享其他重要知识点总结,如果喜欢这篇文章,点个赞👍,关注一下吧】 上一篇文章:《【推…

为什么每个 Java 开发者都需要了解 Scala

前面我们一起回顾了第九期 Scala & Java Meetup 中最受关注的话题 —— jdk 并发编程的终极解决方案:虚拟线程,探讨了这一新特性对包括 Scala 在内的响应式编程语言的影响。 本次 Meetup 的首位分享者 Chunsen,在加入 Tubi 成为 Scala 开…