智能优化算法应用:基于食肉植物算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于食肉植物算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于食肉植物算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.食肉植物算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用食肉植物算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.食肉植物算法

食肉植物算法原理请参考:https://blog.csdn.net/u011835903/article/details/125921790
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

食肉植物算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明食肉植物算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/259310.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

9.关于Java的程序设计-基于Springboot的家政平台管理系统设计与实现

摘要 随着社会的进步和生活水平的提高,家政服务作为一种重要的生活服务方式逐渐受到人们的关注。本研究基于Spring Boot框架,设计并实现了一种家政平台管理系统,旨在提供一个便捷高效的家政服务管理解决方案。系统涵盖了用户注册登录、家政服…

论文精读 MOG 埃里克·格里姆森

Adaptive background mixture models for real-time tracking 用于实时跟踪的自适应背景混合模型 1999年的MOG,作者是麻省理工学院前校长——埃里克格里姆森(W. Eric L. Grimson)。 目录 摘要 结论 1 介绍 1.1 以往的工作和现在的缺点 …

扁平的MutableList元素每隔若干元素一组装入新MutableList,Kotlin

扁平的MutableList元素每隔若干元素一组装入新MutableList&#xff0c;Kotlin fun main(args: Array<String>) {val array arrayOf("a", "b", "c", "d", "e", "f", "g", "h", "i…

期末速成数据库极简版【查询】(2)

目录 select数据查询----表 【1】筛选列 【2】where简单查询 【3】top-n/distinct/排序的查询 【4】常用内置函数 常用日期函数 常用的字符串函数 【5】模糊查询 【6】表数据操作——增/删/改 插入 更新 删除 【7】数据汇总 聚合 分类 ​ &#x1f642;&#…

【ET8】2.ET8入门-ET框架解析

菜单栏相关&#xff1a;ENABLE_DLL选项 ET->ChangeDefine->ADD_ENABLE_DLL/REMOVE_ENABLE_DLL 一般在开发阶段使用Editor时需要关闭ENABLE_DLL选项。该选项关闭时&#xff0c;修改脚本之后&#xff0c;会直接重新编译所有的代码&#xff0c;Editor在运行时会直接使用最…

寒冬不再寒冷:气膜体育馆如何打造温馨运动天地

取暖季即将来临&#xff0c;随着气温逐渐下降&#xff0c;人们在寒冷的冬季里如何保持运动热情和身体的健康成为了一项挑战。而在这个时候&#xff0c;气膜体育馆成为了运动爱好者们的理想场所&#xff0c;提供如春般温暖舒适的运动环境。那么&#xff0c;让我们一起揭秘气膜体…

CMake ‘3.10.2‘ was not found in PATH or by cmake.dir property.

在部署Yolov5到安卓端的过程中出现&#xff1a;CMake ‘3.10.2’ was not found in PATH or by cmake.dir property. 原因&#xff1a; cmake版本太高&#xff0c;需要安装低版本的cmake 最开始下载的是默认最高版本的cmake,默认是3.22.1&#xff0c;解决方案是&#xff0c;下载…

QT作业2

使用手动连接&#xff0c;将登录框中的取消按钮使用qt4版本的连接到自定义的槽函数中&#xff0c;在自定义的槽函数中调用关闭函数 将登录按钮使用qt5版本的连接到自定义的槽函数中&#xff0c;在槽函数中判断ui界面上输入的账号是否为"admin"&#xff0c;密码是否为…

HGNN复现

python版本&#xff1a;3.6.13 torch版本&#xff1a;http://download.pytorch.org/whl/cpu/torch-0.4.0-cp36-cp36m-win_amd64.whl 安装torch&#xff1a; pip install http://download.pytorch.org/whl/cpu/torch-0.4.0-cp36-cp36m-win_amd64.whl 除了numpy、matplotlib、…

Meta Platforms推出Imagine:基于Emu的免费AI文本到图像生成器服务

优势主要体现在以下两个方面&#xff1a; 精细运动控制&#xff1a; 该项目在实现摄像机运动和物体运动方面表现出色&#xff0c;成功实现了对两者运动的高度独立控制。这一特性为运动控制提供了更为精细的调整空间&#xff0c;使得在视频生成过程中能够实现更灵活、多样的运动…

042:el-table表格表头自定义高度(亲测好用)

第042个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下&#xff0c;本专栏提供行之有效的源代码示例和信息点介绍&#xff0c;做到灵活运用。 &#xff08;1&#xff09;提供vue2的一些基本操作&#xff1a;安装、引用&#xff0c;模板使…

基于Java的招聘系统的设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;Vue 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#xff1a;是 目录…