智能优化算法应用:基于粒子群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于粒子群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于粒子群算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.粒子群算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用粒子群算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.粒子群算法

粒子群算法原理请参考:网络博客
粒子群算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

粒子群算法参数如下:

%% 设定粒子群优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明粒子群算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/263154.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

NTP反射放大攻击

文章目录 什么是NTPNTP反射放大攻击解决方案搭建NTP服务器部署服务器端windows NTP命令行本机测试 部署客户端ntpdatechrony 实验Python利用脚本 什么是NTP 基于UDP协议的NTP(网络时间协议):使网络中各个计算机时间同步的一种协议 用途&…

self-attention|李宏毅机器学习21年

来源:https://www.bilibili.com/video/BV1Bb4y1L7FT?p1&vd_sourcef66cebc7ed6819c67fca9b4fa3785d39 文章目录 引言self-attention运作机制b1是如何产生的怎么求关联性数值 α \alpha α 从矩阵乘法的角度再来一次从A得到Q、K、V从Q、K得到 α \alpha α矩阵由…

大数据技术7:基于StarRocks统一OALP实时数仓

前言: StarRocks 的熟悉程度可能不及 ClickHouse或者是远不及 ClickHouse 。但是大家可能听说过 Doris ,而 StarRocks 实际上原名叫做 Doris DB ,他相当于是一个加强版的也就是一个 Doris ,也就是说 Doris 所有的功能 StarRocks 都是有的&…

系统架构设计师教程(二)计算机系统基础知识

系统架构设计师 2.1 计算机系统概述2.2 计算机硬件2.2.1 计算机硬件组成2.2.2 处理器2.2.3 存储器2.2.4 总线2.2.5 接口2.2.6 外部设备 2.3 计算机软件2.3.1 计算机软件概述2.3.2 操作系统2.3.3 数据库关系数据库关系数据库设计的特点及方法关系数据库设计的基本步骤 分布式数据…

【flink番外篇】1、flink的23种常用算子介绍及详细示例(完整版)

Flink 系列文章 一、Flink 专栏 Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。 1、Flink 部署系列 本部分介绍Flink的部署、配置相关基础内容。 2、Flink基础系列 本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的…

20道计算机网络面试题

网络分层 1、说说OSI 七层、TCP/IP 四层的关系和区别? OSI 七层从下往上依次是:物理层、数据链路层、网络层、传输层、会话层、表示层、应用层。一张图给你整明白: TCP/IP 四层从下往上依次是:网络接口层、网络层、传输层、应用…

58.Nacos源码分析2

三、服务心跳。 3.服务心跳 Nacos的实例分为临时实例和永久实例两种,可以通过在yaml 文件配置: spring:application:name: order-servicecloud:nacos:discovery:ephemeral: false # 设置实例为永久实例。true:临时; false:永久ser…

uniapp实战 —— 自定义顶部导航栏

效果预览 下图中的红框区域 范例代码 src\pages.json 配置隐藏默认顶部导航栏 "navigationStyle": "custom", // 隐藏默认顶部导航src\pages\index\components\CustomNavbar.vue 封装自定义顶部导航栏的组件(要点在于:获取屏幕边界…

AspNetCore 中使用 Knife4jUI 更加友好的Swagger界面

🚀介绍 aspnetcore.knife4j是一个基于.NET Core平台的Swagger UI库,它提供了API文档的生成和管理功能。这个库的前身是swagger-bootstrap-ui,在Java项目中广泛使用,由于其优秀的界面和易用性被许多开发者所推崇。现在&#xff0c…

Java+Swing: 主界面组件布局 整理9

说明:这篇博客是在上一篇的基础上的,因为上一篇已经将界面的框架搭好了,这篇主要是将里面的组件完善。 分为三个部分,北边的组件、中间的组件、南边的组件 // 放置北边的组件layoutNorth(contentPane);// 放置中间的 Jtablelayou…

精选Axure原型设计模板,RP原型组件库(PC端移动端元件库及Axure函数及运算符说明)

好的原型组件会大大的提高产品经理的工作效率,小7在陆续整理、精选Axure 8的原型设计模板,包含了原型设计的常用元素和AxureRP 8函数及运算符的说明文档,及各种设备模板框架。 本文也是基于小7另一篇文章的补充,更多更详细的资料…

2023北京智慧城市与电气高峰论坛-安科瑞 蒋静

2023年7月27日,北京土木建筑学会电气设计委员会、北京电气设计技术协作及情报交流网联合举办的“北京电气设计第43届年会”在京盛大召开。安科瑞作为企业微电网能效管理平台服务商与广大同仁共聚本次盛会,尽享技术盛宴。 本次会议采用线上线下相结合&…