智能优化算法应用:基于人工兔算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于人工兔算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于人工兔算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.人工兔算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用人工兔算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.人工兔算法

人工兔算法原理请参考:https://blog.csdn.net/u011835903/article/details/128491707
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

人工兔算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明人工兔算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/263187.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2023济南大学acm新生赛题解

通过答题情况的难度系数&#xff1a; 签到&#xff1a;ACI 铜牌题&#xff1a;BG 银牌题&#xff1a;EF 金牌题&#xff1a;DHJKO 赛中暂未有人通过&#xff1a;LMNP A - AB Problem 直接根据公式计算就行。 #include<stdio.h> int main(){int a,b;scanf("%…

智能制造和低代码:打造高效工厂的关键

引言 随着全球制造业进入数字化时代&#xff0c;智能制造和低代码技术已经成为实现高效工厂运营的关键。这两个关键因素的融合为制造业带来了巨大的机会&#xff0c;使企业能够更灵活地应对市场需求、提高生产效率和降低成本。本文将深入探讨智能制造和低代码技术如何共同塑造…

排序算法-选择/堆排序(C语言)

1基本思想&#xff1a; 每一次从待排序的数据元素中选出最小&#xff08;或最大&#xff09;的一个元素&#xff0c;存放在序列的起始位置&#xff0c;直到全部待排序的 数据元素排完 。 2 直接选择排序: 在元素集合 array[i]--array[n-1] 中选择关键码最大 ( 小 ) 的数据元素…

zabbix(2)

zabbix的自动发现机制 zabbx客户端主动和服务端联系&#xff0c;将自己的地址和端口发送服务端&#xff0c;实现自动添加监控主机 客户端是主动的一方 缺点&#xff1a;自定义网段中主机数量太多&#xff0c;登记耗时会很久&#xff0c;而且这个自动发现机制不是很稳定 zabb…

IDEA启动应用时报错:错误: 找不到或无法加载主类 @C:\Users\xxx\AppData\Local\Temp\idea_arg_filexxx

IDEA启动应用时报错&#xff0c;详细错误消息如下&#xff1a; C:\devel\jdk1.8.0_201\bin\java.exe -agentlib:jdwptransportdt_socket,address127.0.0.1:65267,suspendy,servern -XX:TieredStopAtLevel1 -noverify -Dspring.output.ansi.enabledalways -Dcom.sun.management…

【Angular开发】Angular在2023年之前不是很好

做一个简单介绍&#xff0c;年近48 &#xff0c;有20多年IT工作经历&#xff0c;目前在一家500强做企业架构&#xff0e;因为工作需要&#xff0c;另外也因为兴趣涉猎比较广&#xff0c;为了自己学习建立了三个博客&#xff0c;分别是【全球IT瞭望】&#xff0c;【架构师酒馆】…

在线测试http接口,为您解析最佳测试方法

您是否正在寻找一种方便、高效且可靠的方法来测试您的http接口&#xff1f;在这篇文章中&#xff0c;我们将为您介绍在线测试http接口的最佳方法&#xff0c;帮助您确保您的接口在各种情况下都能正常运行。 什么是http接口&#xff1f; 在开始介绍如何测试http接口之前&#x…

安全基础从0开始

文章目录 常见名词小实战 网站搭建小实战抓包模拟器状态码返回值网站搭建WEB应用安全漏洞 数据包&封包&信息收集**参考点** 常见名词 前后端&#xff0c;POC/EXP&#xff0c;Payload/Shellcode&#xff0c;后门/Webshell&#xff0c;木马/病毒&#xff0c; 反弹&…

用友U8 Cloud 多处反序列化RCE漏洞复现

0x01 产品简介 用友U8 Cloud是用友推出的新一代云ERP,主要聚焦成长型、创新型企业,提供企业级云ERP整体解决方案。 0x02 漏洞概述 用友U8 Cloud存在多处(TableInputOperServlet、LoginServlet 、FileTransportServlet、CacheInvokeServlet、ActionHandlerServlet、Servle…

LeetCode力扣每日一题(Java):27、移除元素

一、题目 二、解题思路 1、我的思路 因为题目中说“元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。”也就是说&#xff1a; 输入&#xff1a;nums [3,2,2,3], val 3 输出&#xff1a;2, nums [2,2] 解释&#xff1a;函数应该返回新的长度 2并且 nums 中的…

JavaEE 09 锁策略

1.锁策略 1.1 乐观锁与悲观锁 其实前三个锁是同一种锁,只是站在不同的角度上去进行描述,此处的乐观与悲观其实是指在预测的角度上看会发生锁竞争的概率大小,概率大的则是悲观锁,概率小的则是乐观锁 乐观锁在加锁的时候就会做较少的事情,加锁的速度较快,但是消耗的cpu资源等也会…

机器人纯阻抗控制接触刚性环境(阻尼影响因素)

问题描述 在机器人学中&#xff0c;阻抗控制是一种常用的控制策略&#xff0c;用于管理机器人在与环境交互时的运动和力。阻抗控制背后的关键概念是将环境视为导纳&#xff0c;而将机器人视为阻抗。 纯阻抗控制接触刚性环境时&#xff0c;机器人的行为方式主要受其阻抗参数的…