TCP的三次握手与四次挥手

目录

三次握手过程理解

四次挥手过程理解 

 常见问题

源码等资料获取方法


 

    序列号seq:占4个字节,用来标记数据段的顺序,TCP把连接中发送的所有数据字节都编上一个序号,第一个字节的编号由本地随机产生;给字节编上序号后,就给每一个报文段指派一个序号;序列号seq就是这个报文段中的第一个字节的数据编号。

    确认号ack:占4个字节,期待收到对方下一个报文段的第一个数据字节的序号;序列号表示报文段携带数据的第一个字节的编号;而确认号指的是期望接收到下一个字节的编号;因此当前报文段最后一个字节的编号+1即为确认号。

    确认ACK:占1位,仅当ACK=1时,确认号字段才有效。ACK=0时,确认号无效

    同步SYN:连接建立时用于同步序号。当SYN=1,ACK=0时表示:这是一个连接请求报文段。若同意连接,则在响应报文段中使得SYN=1,ACK=1。因此,SYN=1表示这是一个连接请求,或连接接受报文。SYN这个标志位只有在TCP建产连接时才会被置1,握手完成后SYN标志位被置0。

    终止FIN:用来释放一个连接。FIN=1表示:此报文段的发送方的数据已经发送完毕,并要求释放运输连接

    PS:ACK、SYN和FIN这些大写的单词表示标志位,其值要么是1,要么是0;ack、seq小写的单词表示序号。

三次握手过程理解

第一次握手:建立连接时,客户端发送syn包(syn=x)到服务器,并进入SYN_SENT状态,等待服务器确认;SYN:同步序列编号(Synchronize Sequence Numbers)。

第二次握手:服务器收到syn包,必须确认客户的SYN(ack=x+1),同时自己也发送一个SYN包(syn=y),即SYN+ACK包,此时服务器进入SYN_RECV状态;

第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=y+1),此包发送完毕,客户端和服务器进入ESTABLISHED(TCP连接成功)状态,完成三次握手。

下图为wireshark抓包数据:

四次挥手过程理解 

1)客户端进程发出连接释放报文,并且停止发送数据。释放数据报文首部,FIN=1,其序列号为seq=u(等于前面已经传送过来的数据的最后一个字节的序号加1),此时,客户端进入FIN-WAIT-1(终止等待1)状态。 TCP规定,FIN报文段即使不携带数据,也要消耗一个序号。
2)服务器收到连接释放报文,发出确认报文,ACK=1,ack=u+1,并且带上自己的序列号seq=v,此时,服务端就进入了CLOSE-WAIT(关闭等待)状态。TCP服务器通知高层的应用进程,客户端向服务器的方向就释放了,这时候处于半关闭状态,即客户端已经没有数据要发送了,但是服务器若发送数据,客户端依然要接受。这个状态还要持续一段时间,也就是整个CLOSE-WAIT状态持续的时间。
3)客户端收到服务器的确认请求后,此时,客户端就进入FIN-WAIT-2(终止等待2)状态,等待服务器发送连接释放报文(在这之前还需要接受服务器发送的最后的数据)。
4)服务器将最后的数据发送完毕后,就向客户端发送连接释放报文,FIN=1,ack=u+1,由于在半关闭状态,服务器很可能又发送了一些数据,假定此时的序列号为seq=w,此时,服务器就进入了LAST-ACK(最后确认)状态,等待客户端的确认。
5)客户端收到服务器的连接释放报文后,必须发出确认,ACK=1,ack=w+1,而自己的序列号是seq=u+1,此时,客户端就进入了TIME-WAIT(时间等待)状态。注意此时TCP连接还没有释放,必须经过2∗∗MSL(最长报文段寿命)的时间后,当客户端撤销相应的TCB后,才进入CLOSED状态。
6)服务器只要收到了客户端发出的确认,立即进入CLOSED状态。同样,撤销TCB后,就结束了这次的TCP连接。可以看到,服务器结束TCP连接的时间要比客户端早一些。

 常见问题

【问题1】为什么连接的时候是三次握手,关闭的时候却是四次握手?

答:因为当Server端收到Client端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是用来同步的。但是关闭连接时,当Server端收到FIN报文时,很可能并不会立即关闭SOCKET,所以只能先回复一个ACK报文,告诉Client端,"你发的FIN报文我收到了"。只有等到我Server端所有的报文都发送完了,我才能发送FIN报文,因此不能一起发送。故需要四步握手。

【问题2】为什么TIME_WAIT状态需要经过2MSL(最大报文段生存时间)才能返回到CLOSE状态?

答:虽然按道理,四个报文都发送完毕,我们可以直接进入CLOSE状态了,但是我们必须假象网络是不可靠的,有可以最后一个ACK丢失。所以TIME_WAIT状态就是用来重发可能丢失的ACK报文。在Client发送出最后的ACK回复,但该ACK可能丢失。Server如果没有收到ACK,将不断重复发送FIN片段。所以Client不能立即关闭,它必须确认Server接收到了该ACK。Client会在发送出ACK之后进入到TIME_WAIT状态。Client会设置一个计时器,等待2MSL的时间。如果在该时间内再次收到FIN,那么Client会重发ACK并再次等待2MSL。所谓的2MSL是两倍的MSL(Maximum Segment Lifetime)。MSL指一个片段在网络中最大的存活时间,2MSL就是一个发送和一个回复所需的最大时间。如果直到2MSL,Client都没有再次收到FIN,那么Client推断ACK已经被成功接收,则结束TCP连接。

【问题3】为什么不能用两次握手进行连接?

答:3次握手完成两个重要的功能,既要双方做好发送数据的准备工作(双方都知道彼此已准备好),也要允许双方就初始序列号进行协商,这个序列号在握手过程中被发送和确认。

       现在把三次握手改成仅需要两次握手,死锁是可能发生的。作为例子,考虑计算机S和C之间的通信,假定C给S发送一个连接请求分组,S收到了这个分组,并发 送了确认应答分组。按照两次握手的协定,S认为连接已经成功地建立了,可以开始发送数据分组。可是,C在S的应答分组在传输中被丢失的情况下,将不知道S 是否已准备好,不知道S建立什么样的序列号,C甚至怀疑S是否收到自己的连接请求分组。在这种情况下,C认为连接还未建立成功,将忽略S发来的任何数据分 组,只等待连接确认应答分组。而S在发出的分组超时后,重复发送同样的分组。这样就形成了死锁。

【问题4】如果已经建立了连接,但是客户端突然出现故障了怎么办?

TCP还设有一个保活计时器,显然,客户端如果出现故障,服务器不能一直等下去,白白浪费资源。服务器每收到一次客户端的请求后都会重新复位这个计时器,时间通常是设置为2小时,若两小时还没有收到客户端的任何数据,服务器就会发送一个探测报文段,以后每隔75秒钟发送一次。若一连发送10个探测报文仍然没反应,服务器就认为客户端出了故障,接着就关闭连接。

源码等资料获取方法

各位想获取源码等教程资料的朋友请点赞 + 评论 + 收藏,三连!

三连之后我会在评论区挨个私信发给你们~

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/26350.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

itheima苍穹外卖项目学习笔记--Day8: 用户下单 / 微信支付

Day8:用户下单、微信支付 Day8:用户下单、微信支付a. 用户下单b. 微信支付 Day8:用户下单、微信支付 a. 用户下单 创建OrderController并提供用户下单方法: /*** 用户下单* param ordersSubmitDTO* return*/ PostMapping("…

基于深度学习的高精度线路板瑕疵目标检测系统(PyTorch+Pyside6+YOLOv5模型)

摘要:基于深度学习的高精度线路板瑕疵目标检测系统可用于日常生活中来检测与定位线路板瑕疵目标,利用深度学习算法可实现图片、视频、摄像头等方式的线路板瑕疵目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5…

深度学习模型:Pytorch搭建ResNet、DenseNet网络,完成一维数据分类任务

2023.7.17 DenseNet和ResNet都是深度学习中常用的网络结构,它们各有优缺点。 DenseNet的优点是可以充分利用网络中的信息,因为每个层都可以接收来自前面所有层的信息。这种密集连接的结构可以提高网络的准确性,减少过拟合的风险。此外&…

DBeaver连接华为高斯数据库 DBeaver连接Gaussdb数据库 DBeaver connect Gaussdb

DBeaver连接华为高斯数据库 DBeaver连接Gaussdb数据库 DBeaver connect Gaussdb 一、概述 华为GaussDB出来已经有一段时间,最近工作中刚到Gauss数据库。作为coder,那么如何通过可视化工具来操作Gauss呢? 本文将记录使用免费、开源的DBeaver来…

Python迭代器与生成器

文章目录 迭代器创建迭代器StopIteration 生成器 迭代器 访问集合元素的一种方式,可以记住遍历的位置的对象 从集合的第一个元素开始,直到所有的元素被访问完结束,迭代器只能往前不会后退 iter(),创建迭代器对象 iter(object, …

matlab滤波器设计-IIR滤波器的设计与仿真

matlab滤波器设计-IIR滤波器的设计与仿真 1 引言 在现代通信系统中,由于信号中经常混有各种复杂成分,所以很多信号的处理和分析都是基于滤波器而进行的。但是,传统的数字滤波器的设计使用繁琐的公式计算,改变参数后需要重新计…

AlienSwap 首期 Launchpad — 粉丝偶像女团 NFT+RWA 的创新探索

NFT 是整个加密市场一致看好,并认为会继续爆发的领域。随着更多的 NFT 平台和 NFT 项目的推出,NFT 市场的格局也在不断变化。从开始的 OpenSea 占据领先地位,到 Blur 的横空出世风头无两,在加密领域,局势更迭总是在不经…

Hive自定义函数

本文章主要分享单行函数UDF(一进一出) 现在前面大体总结,后边文章详细介绍 自定义函数分为临时函数与永久函数 需要创建Java项目,导入hive依赖 创建类继承 GenericUDF(自定义函数的抽象类)(实现…

如何通过Pytest的插件,轻松切换自动化测试的环境地址?

前言 前面小编介绍了如何通过Pytest的插件来实现自动化测试的环境的切换,当时使用的方法是通过钩子函数进行获取命令行参数值,然后通过提前配置好的参数进行切换测试环境地址。 今天小编再次介绍一种方法,通过Pytest的插件:pyte…

谷歌Bard更新中文支持;GPT-4:1.8万亿参数、混合专家模型揭秘; Meta推出商用版本AI模型

🦉 AI新闻 🚀 谷歌的AI聊天工具Bard更新,增加中文支持 摘要:谷歌的AI聊天工具Bard新增中文环境,用户可以使用简体和繁体中文进行交流。然而,与竞品相比,Bard的回复略显生硬,语义理…

Redis深入——管道、发布订阅、主从复制、哨兵监控和集群

前言 在前面的学习中,我们已经了解了Redis的基本语法以及Redis持久化和事务的概念。而在这篇文章中我们继续来梳理管道、发布订阅、主从复制、哨兵监控和集群的知识,理解Redis主从复制到集群分片的演进过程,希望对正在学习的小伙伴有一定的帮…

关于学习过程中的小点

nfev : 函数求值次数njev : Jacobian 评估的数量nit :算法的迭代次数 permute(dims)#维度转换 torch.split #[按块大小拆分张量] Pytorch.view Pytorch中使用view()函数对张量进行重构维度,类似于resize()、reshape()。用法如下:view(参数a,参数b,...)&a…