dlib是什么?

dlib C++ Libraryicon-default.png?t=N7T8http://dlib.net/

dlib是什么?

Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems. It is used in both industry and academia in a wide range of domains including robotics, embedded devices, mobile phones, and large high performance computing environments. Dlib's open source licensing allows you to use it in any application, free of charge.

Dlib是一个现代C++工具包,包含机器学习算法和工具,用于在C++中创建复杂的软件来解决现实世界中的问题。它在工业和学术界广泛应用,包括机器人、嵌入式设备、移动电话和大型高性能计算环境。Dlib的开源许可允许您在任何应用程序中免费使用它。

Major Features(主要特征)

  • Documentation(文档)
    • Unlike a lot of open source projects, this one provides complete and precise documentation for every class and function. There are also debugging modes that check the documented preconditions for functions. When this is enabled it will catch the vast majority of bugs caused by calling functions incorrectly or using objects in an incorrect manner.
    • Lots of example programs are provided
    • I consider the documentation to be the most important part of the library. So if you find anything that isn't documented, isn't clear, or has out of date documentation, tell me and I will fix it.
  • High Quality Portable Code(高质量可移植代码)
    • Good unit test coverage. The ratio of unit test lines of code to library lines of code is about 1 to 4.
    • The library is tested regularly on MS Windows, Linux, and Mac OS X systems. However, it should work on any POSIX system and has been used on Solaris, HPUX, and the BSDs.
    • No other packages are required to use the library. Only APIs that are provided by an out of the box OS are needed.
    • There is no installation or configure step needed before you can use the library. See the How to compile page for details.
    • All operating system specific code is isolated inside the OS abstraction layers which are kept as small as possible. The rest of the library is either layered on top of the OS abstraction layers or is pure ISO standard C++.
  • Machine Learning Algorithms(机器学习算法)
    • Deep Learning
    • Conventional SMO based Support Vector Machines for classification and regression
    • Reduced-rank methods for large-scale classification and regression
    • Relevance vector machines for classification and regression
    • General purpose multiclass classification tools
    • A Multiclass SVM
    • A tool for solving the optimization problem associated with structural support vector machines.
    • Structural SVM tools for sequence labeling
    • Structural SVM tools for solving assignment problems
    • Structural SVM tools for object detection in images as well as more powerful (but slower) deep learning tools for object detection.
    • Structural SVM tools for labeling nodes in graphs
    • A large-scale SVM-Rank implementation
    • An online kernel RLS regression algorithm
    • An online SVM classification algorithm
    • Semidefinite Metric Learning
    • An online kernelized centroid estimator/novelty detector and offline support vector one-class classification
    • Clustering algorithms: linear or kernel k-means, Chinese Whispers, and Newman clustering.
    • Radial Basis Function Networks
    • Multi layer perceptrons
  • Numerical Algorithms(数值算法)
    • A fast matrix object implemented using the expression templates technique and capable of using BLAS and LAPACK libraries when available.
    • Numerous linear algebra and mathematical operations are defined for the matrix object such as the singular value decomposition, transpose, trig functions, etc.
    • General purpose unconstrained non-linear optimization algorithms using the conjugate gradient, BFGS, and L-BFGS techniques
    • Levenberg-Marquardt for solving non-linear least squares problems
    • Box-constrained derivative-free optimization via the BOBYQA algorithm
    • An implementation of the Optimized Cutting Plane Algorithm
    • Several quadratic program solvers
    • Combinatorial optimization tools for solving optimal assignment and min cut/max flow problems as well as the CKY algorithm for finding the most probable parse tree
    • A big integer object
    • A random number object
  • Graphical Model Inference Algorithms(图形模型推理算法)
    • Join tree algorithm for exact inference in a Bayesian network.
    • Gibbs sampler markov chain monte carlo algorithm for approximate inference in a Bayesian network.
    • Routines for performing MAP inference in chain-structured, Potts, or general factor graphs.
  • Image Processing(图像处理)
    • Routines for reading and writing common image formats.
    • Automatic color space conversion between various pixel types
    • Common image operations such as edge finding and morphological operations
    • Implementations of the SURF, HOG, and FHOG feature extraction algorithms.
    • Tools for detecting objects in images including frontal face detection and object pose estimation.
    • High quality face recognition
  • Threading(线程)
    • The library provides a portable and simple threading API
    • A message passing pipe for inter-thread and inter-process communication
    • A timer object capable of generating events that are regularly spaced in time
    • Threaded objects
    • Threaded functions
    • Parallel for loops
    • A thread_pool with support for futures
  • Networking(网络)
    • The library provides a portable and simple TCP sockets API
    • An object to help you make TCP based servers
    • iostream and streambuf objects that enables TCP sockets to interoperate with the C++ iostreams library
    • A simple HTTP server object you can use to embed a web server into your applications
    • A message passing pipe for inter-thread and inter-process communication
    • A tool used to implement algorithms using the Bulk Synchronous Parallel (BSP) computing model
  • Graphical User Interfaces(GUI接口)
    • The library provides a portable and simple core GUI API
    • Implemented on top of the core GUI API are numerous widgets
    • Unlike many other GUI toolkits, the entire dlib GUI toolkit is threadsafe
  • Data Compression and Integrity Algorithms(数据压缩和完整性算法)
    • A CRC 32 object
    • MD5 functions
    • Various abstracted objects representing parts of data compression algorithms. Many forms of the PPM algorithm are included.
  • Testing(测试)
    • A thread safe logger object styled after the popular Java logger log4j
    • A modular unit testing framework
    • Various assert macros useful for testing preconditions
  • General Utilities(通用应用程序)
    • A type-safe object to convert between big and little endian byte orderings
    • A command line parser with the ability to parse and validate command lines with various types of arguments and options
    • An XML parser
    • An object that can perform base64 conversions
    • Many container classes
    • Serialization support
    • Many memory manager objects that implement different memory pooling strategies
    • A tool that lets you easily call C++ from MATLAB

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/264736.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

力扣题:数字与字符串间转换-12.13

力扣题-12.13 [力扣刷题攻略] Re:从零开始的力扣刷题生活 力扣题1:442. 数组中重复的数据 解题思想:直接相除即可 class Solution(object):def optimalDivision(self, nums):""":type nums: List[int]:rtype: str"&qu…

docker-compose简介安装卸载

简介 compose、machine 和 swarm 是docker 原生提供的三大编排工具。简称docker三剑客。 docker-compose容器编排工具,作用如下: compose管理docker工具,如启动关闭daocker容器,当然最大特点是可以把启动命令YAML 文件方式存起来,下次启动就直接使用 docker-comp…

2023最新最全【Notepad++】安装教程【附安装包】

Notepad 获取与安装 —————————— Notepad 是什么 在运行中输入 notepad 会弹出来记事本:所以 Notepad 就是增强的记事本!这个跟 C 与 C 的名字是一样滴!Notepad 是开源软件 GPL 许可证 可以免费使用 自带中文 支持很多计算机编…

[后端卷前端2]

绑定class 为什么需要样式绑定呢? 因为有些样式我们希望能够动态展示 看下面的例子: <template><div><p :class"{active:modifyFlag}">class样式绑定</p></div> </template><script>export default {name: "goo…

Linux——缓冲区与实现C库的fopen,fwrite,fclose

目录 一.缓冲区 1缓冲区的概念 2.缓冲区存在的意义 3.缓冲区刷新策略 4.什么是刷新&#xff1f; C语言的缓冲区在哪里&#xff1f; ​编辑 仿写C库里的fopen&#xff0c;fclose&#xff0c;fwrite。 mystdio.h mystdio.c main.c(向文件中写入20次msg) 一.缓冲区 1…

Spring 面向切面编程(AOP)

一、aop介绍 &#xff08;一&#xff09;前言 一般的后端开发流程是纵向开发&#xff0c;就是controller&#xff08;控制层&#xff09;->service&#xff08;业务层&#xff09;->mapper&#xff08;数据持久层&#xff09;&#xff0c;Spring采用动态代理技术可以在…

ARM day3

题目&#xff1a;实现3盏灯的流水 代码&#xff1a; .text .global _start _start: 设置RCC寄存器使能 LDR R0,0X50000A28 LDR R1,[R0] ORR R1,R1,#(0X1<<4) ORR R1,R1,#(0X1<<5) STR R1,[R0]设置PE10管脚为输出模式 LDR R0,0X50006000 LDR R1,[R0] BIC R1,R1,…

ThinkPHP连接ORACLE数据库教程

目录 概念基本步骤详细操作问题排除参考 概念 要连接Oracle数据库&#xff0c;必须有两个东西&#xff0c;一个PHP官方写的扩展&#xff0c;一个Ocracle官方写的客户端PHP是通过扩展去操作oralce客户端连接的服务端数据库&#xff0c;所以两个都不能少&#xff0c;而且版本必须…

Unity之OpenXR+XR Interaction Toolkit接入Meta Quest3

前言 随着备受期待的Meta Quest 3与今年10月10日发布,这款来自Meta的下一代VR游戏头戴设备承诺将彻底改变您的游戏方式。 Meta Quest 3,玩家只需轻松一触即可在虚拟现实和真实世界之间无缝切换,无需摘下头戴设备进行快速现实检查。 Meta Quest 3最引人注目的特点之一是其能…

Oracle(2-14)User-Managed Incomplete Recovery

文章目录 一、基础知识1、Incomplete Recovery Overview 不完全恢复概述2、Situations Requiring IR 需要不完全恢复的情况3、Types of IR 不完全恢复的类型4、IR Guidelines 不完全恢复指南5、User-Managed Procedures 用户管理程序6、RECOVER Command Overview 恢复命令概述7…

视觉检测系统在半导体行业的应用

一、半导体产业链概述 半导体产业链是现代电子工业的核心组成部分&#xff0c;涵盖了从原材料到最终产品的整个生产过程。这个产业链主要分为以下几个环节&#xff1a; 1.原材料供应&#xff1a;半导体行业的基石是半导体材料&#xff0c;如硅片、化合物半导体等。这些材料需要…

井盖发生位移怎么监测,智能井盖传感器效果

对于井盖出现位移人们已经不陌生&#xff0c;走在大街小巷之中松动的井盖不在少数&#xff0c;虽然有一些松动位移的井盖短时间内&#xff0c;只是在行人或车辆经过时出现异响&#xff0c;但是这些都是潜在的安全隐患&#xff0c;不知何时再次经过时便可能出现安全事故。面对该…