Project Euler 865 Triplicate Numbers(线性dp)

题目

能通过每次消除3个一样的数字,最终把数字消成空的数字是合法的,

求串长度不超过n的,没有前导0的数字中,合法的数字的个数

n=10000,答案对998244353取模,只需要输出数字

思路来源

乱搞AC

题解

暴力先把n=9求出来,有了n=9和n=30,都对上之后就敢交n=1e4了

dp[i]表示长度为i的合法方案,显然i是3的倍数是才有合法方案

然后还要分有没有前导0,于是就多开了一维,虽然后来发现dp[i][0]没有用到

dp[i][0]表示没有前导0限制的方案数,dp[i][1]表示有前导0限制的方案数

考虑最后一个数是怎么填的,只有四种情况,

其中xxx的长度也需要满足3的倍数,

①xxx111

②1xxx11

③11xxx1

④1xxx1yyy1

此外,为了避免重复,

需要保证这三个1在这一段中是位置处于最后的,能被消掉的3个1

第一种情况显然满足,第二三四种情况,都需要保证,

中间的xxx、yyy不管怎么消,都不能有1漏在最左边或最右边

比如11001111100011122211这些,下划线的3个1不是位于最后的3个1,就会计数重复

101110011就是合法的,中间011100怎么消,都不会导致1出现在最左或最右,

只要和想消的3个1不相邻,就能构成一组唯一计数的方案

所以,定义f[i]用于辅助转移,

f[i]表示长度为i时,0-9随便填,能消完,

但是不管怎么消,中途1都不能出现在最左或最右的方案数

然后就分情况转移的四种情况讨论即可,

第一种情况转移是O(1)的,

第二三种情况1xxx11和11xxx1是可以合并成一种转移,给系数乘2的,转移是O(n)的,

第三种情况暴力转移是O(n^2)的,但可以一边求一边暴力维护卷积mul,这样转移就是O(n)的了

第二三种情况合并一下,那就是三种情况,

除去第一种情况O(1)转移外,都要考虑前导0的问题

每种情况填的数字分是否占据了第一个位置讨论一下,

填的是第一个位置时,只能填9个数字,否则能填10个数字

求了f、dp[i][0]、dp[i][1]三个数组,

所以,总的转移式子一共3*(1+2*2)个

答案是dp数组的前缀和

代码1(dp)

#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=(a);i<=(b);++i)
#define per(i,a,b) for(int i=(a);i>=(b);--i)
//#define int long long
typedef long long ll;
typedef double db;
typedef pair<ll,int> P;
#define fi first
#define se second
#define pb push_back
#define dbg(x) cerr<<(#x)<<":"<<x<<" ";
#define dbg2(x) cerr<<(#x)<<":"<<x<<endl;
#define SZ(a) (int)(a.size())
#define sci(a) scanf("%d",&(a))
#define scll(a) scanf("%lld",&(a))
#define pt(a) printf("%d",a);
#define pte(a) printf("%d\n",a)
#define ptlle(a) printf("%lld\n",a)
#define debug(...) fprintf(stderr, __VA_ARGS__)
const int N=1e4+10,M=10000,mod=998244353;
//dpi0:没前导0限制 dpi1:有前导0限制
//fi:两边只能填1-9,中间可以填0,两边不是0,且以任意顺序炸,0不会两边擦边的方案数
int t,f[N],dp[N][2],mul2[N],sum[N],ans;//ein,nit;
ll v;
int modpow(int x,int n,int mod){int res=1;for(;n;n>>=1,x=1ll*x*x%mod){if(n&1)res=1ll*res*x%mod;}return res;
}
void add(int &x,int y){x=(x+y)%mod;}
void sol(){//ein=8ll*modpow(9,mod-2,mod)%mod;//nit=9ll*modpow(10,mod-2,mod)%mod;dp[3][0]=10;dp[3][1]=9;sum[3]=f[3]=9;for(int i=6;i<=M;i+=3){add(f[i],9ll*f[i-3]%mod);//000-888add(dp[i][1],10ll*dp[i-3][1]%mod);//0-9add(dp[i][0],10ll*dp[i-3][0]%mod);//0-9//printf("i:%d dp:%d\n",i,dp[i]);for(int j=6;j<=i;j+=3){if(j==i){//只能填1-9//printf("j:%d dpj-3:%d\n",j,dp[j-3]);add(f[i],18ll*f[j-3]%mod);add(dp[i][1],18ll*f[j-3]%mod);//110001,100011 不能与相邻相同add(dp[i][0],20ll*f[j-3]%mod);//110001,100011 不能与相邻相同if(j>=9){add(f[i],9ll*mul2[j-3]%mod);add(dp[i][1],9ll*mul2[j-3]%mod);//100010001 不能与相邻相同add(dp[i][0],10ll*mul2[j-3]%mod);//100010001 不能与相邻相同}}else{//能填0-9add(f[i],18ll*f[j-3]%mod*f[i-j]%mod);add(dp[i][1],20ll*f[j-3]%mod*dp[i-j][1]%mod);//110001,100011 不能与相邻相同add(dp[i][0],20ll*f[j-3]%mod*dp[i-j][0]%mod);//110001,100011 不能与相邻相同if(j>=9){add(f[i],9ll*mul2[j-3]%mod*f[i-j]%mod);add(dp[i][1],10ll*mul2[j-3]%mod*dp[i-j][1]%mod);//100010001 不能与相邻相同add(dp[i][0],10ll*mul2[j-3]%mod*dp[i-j][0]%mod);//100010001 不能与相邻相同}}}for(int j=3;j<i;j+=3){//add(mul[i],1ll*ein*dp[j]%mod*ein%mod*dp[i-j]%mod);add(mul2[i],1ll*f[j]%mod*f[i-j]%mod);}//printf("i:%d dp0:%d dp1:%d mul:%d\n",i,dp[i][0],dp[i][1],mul2[i]);sum[i]=(sum[i-3]+dp[i][1])%mod;}
}
int main(){//sci(t);scanf("%lld",&v);v%=mod;printf("%d\n",(int)v);//cin>>t;sol();int m=M/3*3,ans=sum[m];printf("%d\n",ans);return 0;
}

代码2(暴力打表)

打表知,T(6)=261,T(9)=9504

#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=(a);i<=(b);++i)
#define per(i,a,b) for(int i=(a);i>=(b);--i)
//#define int long long
typedef long long ll;
typedef double db;
typedef pair<ll,int> P;
#define fi first
#define se second
#define pb push_back
#define dbg(x) cerr<<(#x)<<":"<<x<<" ";
#define dbg2(x) cerr<<(#x)<<":"<<x<<endl;
#define SZ(a) (int)(a.size())
#define sci(a) scanf("%d",&(a))
#define scll(a) scanf("%lld",&(a))
#define pt(a) printf("%d",a);
#define pte(a) printf("%d\n",a)
#define ptlle(a) printf("%lld\n",a)
#define debug(...) fprintf(stderr, __VA_ARGS__)
const int N=1e4+10,M=9,mod=998244353;
int t,ans,stk[15],c,cnt;
int main(){sci(t);int l=1,r=1e9;rep(i,l,r-1){int c=0;for(int j=i;j;j/=10){int v=j%10;if(c>=2 && stk[c]==stk[c-1] && stk[c]==v)c-=2;else stk[++c]=v;}if(!c){//printf("i:%d\n",i);cnt++;//if(cnt==10)break;}}printf("%d\n",cnt);return 0;
}
//T(6)=261
//T(9)=9504

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/264821.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MacBook电脑内存容量小根本不够用?如何一键解决?

得益于M1系列芯片的强势表现&#xff0c;很多朋友都换用了MacBook&#xff0c;首次接触到了macOS系统。但出乎意料的是&#xff0c;很多人就开始受罪了……明明这么出色的硬件&#xff0c;为何到处都不顺手呢&#xff1f;尤其是容量&#xff0c;MacBook相比同价位的Windows笔记…

在 Qt Creator 中编写 Doxygen 风格的注释

2023年12月10日&#xff0c;周日上午 如何生成Doxygen 风格的注释 在需要Doxygen 风格注释的函数上方输入 /**&#xff0c;然后按下 Enter 键。Qt Creator 将自动为你生成一个注释模板。 输入&#xff0c;Qt Creator会自动帮你补全Doxygen标签 不得不说&#xff0c;写了Doxyge…

江科大 STM32入门教程 P14 定时中断和定时器外部时钟

1 通用定时器中断的初始化&#xff08;Time2&#xff09; 1.1 开启RCC的TimxCLK时钟, 由于Time2是由APB1总线的外设控制的 RccAPB1PeriphClockCmd(RCC_APB1PeriPh_TIM2,ENABLE);//使能APB1总线1.2 选择时基单元时钟 选择时基单元内部时钟 TIM_InteralClockConfig(IIM2);//内…

openGauss学习笔记-150 openGauss 数据库运维-备份与恢复-物理备份与恢复之gs_backup

文章目录 openGauss学习笔记-150 openGauss 数据库运维-备份与恢复-物理备份与恢复之gs_backup150.1 背景信息150.2 前提条件150.3 语法150.4 参数说明150.5 示例 openGauss学习笔记-150 openGauss 数据库运维-备份与恢复-物理备份与恢复之gs_backup 150.1 背景信息 openGaus…

alpine linux 之嵌入式搭建

目录 序启动修改源安装 openssh设置开机网络 ip参考 序 最近发现了 alpine linux 这个文件系统&#xff0c;这是一个基于 musl libc 和 busybox 的面向安全的轻量级 Linux 发行版。 下载了他的文件系统&#xff0c;只有 3M 多的压缩包&#xff0c;非常适合嵌入式系统。 地址…

037.Python面向对象_关于抽象类和抽象方法

我 的 个 人 主 页&#xff1a;&#x1f449;&#x1f449; 失心疯的个人主页 &#x1f448;&#x1f448; 入 门 教 程 推 荐 &#xff1a;&#x1f449;&#x1f449; Python零基础入门教程合集 &#x1f448;&#x1f448; 虚 拟 环 境 搭 建 &#xff1a;&#x1f449;&…

MIT线性代数笔记-第28讲-正定矩阵,最小值

目录 28.正定矩阵&#xff0c;最小值打赏 28.正定矩阵&#xff0c;最小值 由第 26 26 26讲的末尾可知在矩阵为实对称矩阵时&#xff0c;正定矩阵有以下四种判定方法&#xff08;都是充要条件&#xff09;&#xff1a; 所有特征值都为正左上角所有 k k k阶子矩阵行列式都为正&…

Linux 基础IO

文章目录 前言基础IO定义系统IO接口文件描述符重定向原理缓冲区刷新 前言 要知道每个函数/接口的全部参数和返回值建议去官网或者直接在Linux的man手册中查&#xff0c;这不是复制粘贴函数用法的文章。 C语言文件读写介绍链接 基础IO定义 IO是Input/Output的缩写&#xff0c…

【Linux】进程周边001之进程概念

&#x1f440;樊梓慕&#xff1a;个人主页 &#x1f3a5;个人专栏&#xff1a;《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》《C》《Linux》 &#x1f31d;每一个不曾起舞的日子&#xff0c;都是对生命的辜负 目录 前言 1.基本概念 2.描述进程-PCB…

linux之autoconf(1)基础介绍

Linux之autoconf(1)基础介绍 Author&#xff1a;Onceday Date&#xff1a;2023年2023年12月10日 漫漫长路&#xff0c;才刚刚开始… 本文主要内容翻译自Autoconf官方文档&#xff0c;仅供学习交流之用。 全系列文章请查看专栏: buildroot编译框架_Once_day的博客-CSDN博客。…

SpringBoot实战项目:蚂蚁爱购(从零开发)

简介 这是从零开发的SpringBoot实战项目&#xff0c;名字叫蚂蚁爱购。 从零开发项目&#xff0c;视频加文档&#xff0c;十天彻底掌握开发SpringBoot项目。 教程路线是&#xff1a;搭建环境> 安装软件> 创建项目> 添加依赖和配置> 通过表生成代码> 编写Java代…

【前端】CSS浮动(学习笔记)

一、浮动 1、传统网页布局 网页布局的本质&#xff1a;用 CSS 来摆放盒子&#xff0c;把盒子摆放到相应位置。 CSS 提供了三种传统布局方式&#xff08;盒子如何进行排列顺序&#xff09; 普通流&#xff08;标准流&#xff09;浮动定位 实际开发中&#xff0c;一个页面基…