【C语言】【数据结构】自定义类型:结构体

引言

这是一篇对结构体的详细介绍,这篇文章对结构体声明、结构体的自引用、结构体的初始化、结构体的内存分布和对齐规则、库函数offsetof、以及进行内存对齐的原因、如何修改默认对齐数、结构体传参进行介绍和说明。

 158c3f50b199454985017a51dbef9841.png               ✨ 猪巴戒:个人主页✨

               所属专栏:《C语言进阶》

        🎈跟着猪巴戒,一起学习C语言🎈

目录

引言

结构体的声明

结构体的基础

结构的声明

匿名结构体类型

结构体的自引用

typedef作用于结构体的问题

 结构体变量的定义和初始化

多个元素的初始化要用大括号{ }

结构体的内存对齐

1.对齐规则

1.例子

2.例子

 3.例子

          

4.例子

offsetof

offsetof的使用

 ​编辑

 为什么要存在内存对齐

修改默认对齐数

 结构体传参


结构体的声明

  

结构体的基础

结构是一些值的集合,这些值被称为成员变量。结构的每个成员可以是不同类型的变量。

在一个变量中,要存放性别、年龄、成绩、地址多种类型的数据时,C语言允许用户自己建立由不同类型数据组成的组合型的数据结构,它称为结构体。

    

结构的声明

结构体是怎么声明的呢?

struct tag
{member_list;
}variable_list;  //分号不能丢struct Student
{//学生的相关信息char name[20];int age;
}s1,s2;
  • tag,Student是结构体名
  • member_list是成员表列
  • struct是声明结构体类型是必须使用的关键字,不能省略
  • s1,s2变量就是学生变量。
  • { }后面要记得把“ ;”带上

struct tag就是一个结构体类型,我们可以根据自己的需要建立结构体类型,struct Teacher,struct Student等结构体类型,各自包含不同的成员。

如果将s1,s2放在main函数的外面,那么s1,s2就是全局变量。

struct Student
{//学生的相关信息char name[20];int age;
}s1,s2;int main()
{return 0;
}

        

匿名结构体类型

结构体在声明的时候省略了结构体标签(tag),没有名字的结构体类型只能使用一次,被称为匿名结构体类型

由于没有名字,编译器会把下面的两个代码当成完全不同的两个类型。

所以,p = &x.

会因为类型不同报错。

struct
{char name[20];int age;
}s1;struct
{char name[20];int age;
}a[20],*p;

        

结构体的自引用

结构体的自引用用到数据结构中的链表。

数据结构中有顺序表、链表的概念,

顺序表

数据在内存中是顺序排放的,可以逐个根据地址找到下一个数据。

链表

数据在内存中的存放是没有规律的但是存放数据,会分为两个部分,

一个部分叫数据域,存放有效数据,

另一个部分叫指针域,用来存放下一个数据的地址,可以通过地址直接找到下一个数据。

89dab2a99bb64a65acdd24ac4d63b4e8.png

我们通过链表就可以实现结构体的自引用。

struct Node
{int data;struct Node* next;
};

        

typedef作用于结构体的问题

下面在结构体自引用使用的改成中,夹杂了typedef对匿名结构体类型重命名,看看下面的代码,有没有问题?

typedef struct Node
{int data;Node* next;
}Node;

答案是不行的,因为Node是对前面的匿名结构体类型的重命名产生的,但是在匿名结构体内部提前使用Node类型来创建成员变量,这是不行的。

typedef struct Node
{int data;struct Node* next;
}Node;

          

 结构体变量的定义和初始化

struct Point是结构体类型,它相当于一个模型,是没有占据具体空间的,

当我们建立结构体变量p1,它相当于具体的房屋,在内存中储存数据。

struct Point
{int x;int y;
}p1 = { 2,3 };

        

多个元素的初始化要用大括号{ }

在结构体中,如果存在多个元素的变量,我们初始化时要使用大括号。

像数组一样,arr[] = { 0, 1, 2, 3, 4 };

  • 打印结构体,s1是struct Stu的变量,name是s1的成员变量,用s1.name表示s1结构体的name变量
  • s是struct Stu中的成员变量,用s1.s.n表示在结构体struct score的成员变量n。
struct score
{int n;char ch;
};
struct Stu
{char name[20];int age;struct score s;
};int main()
{struct Stu s1 = { "zhangsan",20,{100,'q' } };printf("%s %d %d %c\n", s1.name, s1.age, s1.s.n, s1.s.ch);return 0;
}

        

结构体的内存对齐

如何计算结构体的大小?

结构体的内存分布是怎样的?

        

1.对齐规则

首先掌握结构体的对齐规则

1. 结构体的第⼀个成员对⻬到和结构体变量起始位置偏移量为0的地址处

2. 其他成员变量要对⻬到某个数字(对⻬数)的整数倍的地址处。

对⻬数 = 编译器默认的⼀个对⻬数 与 该成员变量⼤⼩的较⼩值。

- VS 中默认的值为 8

- Linux中 gcc 没有默认对⻬数,对⻬数就是成员⾃⾝的⼤⼩

3. 结构体总⼤⼩最⼤对⻬数(结构体中每个成员变量都有⼀个对⻬数,所有对⻬数中最⼤的)的整数倍。

4. 如果嵌套了结构体的情况,嵌套的结构体成员对⻬到⾃⼰的成员中最⼤对⻬数的整数倍处,结构体的整体⼤⼩就是所有最⼤对⻬数(含嵌套结构体中成员的对⻬数)的整数倍。

          

只是文字的说明,免不了晦涩难懂,接下来用例子来给大家讲解

1.例子

#include <stdoi.h>
struct S1
{char c1;int i;char c2;
};
int main()
{printf("%d\n", sizeof(struct S1));return 0;
}

177ba4f9a12045639def737ae589d621.png

解析: 

右边表示的是偏移量,

1.第一个成员char c1要对齐到和结构体变量起始位置偏移量为0的地址处,占一个字节

2.其他成员要对齐到对齐数的整数倍的地址处

对⻬数 = 编译器默认的⼀个对⻬数 与 该成员变量⼤⼩的较⼩值。

VS中的默认对齐数是8.

  int i的大小是4个字节,对齐数就是4。int i 的地址要对齐到为偏移量整数倍的地址,也就是4的整数倍,偏移量为4的地址。int i 是4个字节,那占据的地址偏移量为4~7

char c2 的大小是1个字节,对齐数是1。1可以为任意偏移量的整数倍。所以char c2的地址的偏移量就是8.

3.结构体的大小为最大对齐数(结构体中每个成员变量都有一个对齐数,所有对齐数中最大的)的整数倍

成员变量有char c1,int i ,char c2。它们的对齐数分别是1,4,1。因此最大对齐数为4。

结构体总大小为最大对齐数的整数倍,现在偏移量是0~8,一共是9个字节,要凑成4的整数倍,就是12个字节,在浪费3个字节就可以了,地址偏移量9~11一共是3个字节。

这个结构体的内存就储存在偏移量为0~11的空间。

d4167cce0c0f45e893871db222a54036.png

          

2.例子

#include<stdio.h>
struct S2
{char c1;char c2;int i;
};
int main()
{printf("%d\n",sizeof(struct S2));return 0;
}

 1e4f04a380214b4bb0f2a9f78eed0999.png

          

解析:   

右边表示的是偏移量,

1.第一个成员char c1要对齐到和结构体变量起始位置偏移量为0的地址处,占一个字节

2.其他成员要对齐到对齐数的整数倍的地址处

对⻬数 = 编译器默认的⼀个对⻬数 与 该成员变量⼤⼩的较⼩值。

VS中的默认对齐数是8.

char c1  的大小是1个字节,对齐数就是1。char c1的地址要对齐到为偏移量整数倍的地址,也就是1的整数倍,偏移量为1的地址。

int i 的大小是4个字节,对齐数是4。int i 的地址就要移到偏移量为4的倍数的地址。所以int i 的地址的偏移量就是4.int i 是4个字节,那占据的地址偏移量为4~7

3.结构体的大小为最大对齐数(结构体中每个成员变量都有一个对齐数,所有对齐数中最大的)的整数倍

成员变量有char c1,int i ,char c2。它们的对齐数分别是1,4,1。因此最大对齐数为4。

结构体总大小为最大对齐数的整数倍,现在偏移量是0~7,刚好是8个字节,是4的倍数。

这个结构体的内存就储存在偏移量为0~7的空间。

d669a6337351463187f729ae196ee7cb.png

        

 3.例子

#include<stdio.h>
struct S3
{double d;char c;int i;
};
int main()
{printf("%d\n",sizeof(struct S3));return 0;
}

4264bdd243934829baf65243a4fed71d.png

解析: 

1.第一个成员要对齐到结构体变量起始位置偏移量为0的地址处,double d占8个字节,所以占据的内存空间是偏移量为0~7的地址

2.其他成员要对齐到对齐数的整数倍的地址处

char c的大小是1个字节,任意偏移量都可以为1的整数倍,所以char c的地址是下一位,偏移量为8的地址。

int i 的大小是4个字节,要对齐到偏移量为4的倍数的地址,也就是偏移量为12,int i 占据的内存空间为偏移量为12~15的地址。

3.结构体的大小为最大对齐数的整数倍。

最大对齐数是double的对齐数,也就是8。现在的结构体占16个字节(偏移量为0~15),刚好是8的倍数。

695853325b444691812d75cc57fff25c.png

          

4.例子

这个例子包括了嵌套结构体的情况,嵌套的结构体成员对⻬到⾃⼰的成员中最⼤对⻬数的整数倍处,结构体的整体⼤⼩就是所有最⼤对⻬数(含嵌套结构体中成员的对⻬数)的整数倍。

#include<stdio.h>
struct S3
{double d;char c;int i;
};
struct S4
{char c1;struct S3 s3;double d;
};
int main()
{printf("%d\n",sizeof(struct S4));return 0;
}

 4a85bf8db58440a5992a83d6a540841a.png

解析: 

1.第一个成员要对齐到结构体变量起始位置偏移量为0的地址处,char c1占1个字节,占据偏移量为0的空间。

2.嵌套的结构体成员对⻬到⾃⼰的成员中最⼤对⻬数的整数倍处,结构体的整体⼤⼩就是所有最⼤对⻬数(含嵌套结构体中成员的对⻬数)的整数倍。

接下来是struct s3,要对齐自己成员的最大对齐数,double d的对齐数为8个字节,对齐到偏移量为8的地址,

3.其他成员要对齐到对齐数的整数倍的地址处,嵌套的结构体成员也是这样,double d占据8个字节,占据偏移量为8~15的地址。

char c对齐偏移量16,占据一个字节。

int i 的对齐数为4,对齐偏移量为20,占据4个字节,就是偏移量为20~23的空间。

struct S3整理完,继续到struct S4,轮到double d

double d的对齐数为8,对齐偏移量24,占据8个字节,占据空间偏移量为24~31。

4.结构体的大小为最大对齐数的整数倍。

当前空间一共是32个字节(0~31),结构体struct S4,struct S3中的成员的最大对齐数是8。因此结构体的大小要是最大对齐数的整数倍。32刚好是8的整数倍。

b3918788de7c482f9619ec761120d842.png

          

offsetof

返回成员的偏移量 ,头文件<stddef.h>

offsetof (type,member)

a0f30360e47c4f359c4a43f75531940b.png

offsetof的使用

type是类型,

#include <stdio.h>
#include <stddef.h>
struct S1
{char c1;int i;char c2;
};
int main()
{printf("%d\n", offsetof(struct S1, c1));printf("%d\n", offsetof(struct S1, i));printf("%d\n", offsetof(struct S1, c2));return 0;
}

 3e8aa4f2d6b64882ad78ae257b6f82c9.png

          

 为什么要存在内存对齐

1. 平台原因 (移植原因):
不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
2. 性能原因:
数据结构(尤其是栈)应该尽可能地在⾃然边界上对⻬。原因在于,为了访问未对⻬的内存,处理器需要 作两次内存访问;⽽对⻬的内存访问仅需要⼀次访问。假设⼀个处理器总是从内存中取8个字节,则地址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对⻬成8的倍数,那么就可以 ⽤⼀个内存操作来读或者写值了。否则,我们可能需要执⾏两次内存访问,因为对象可能被分放在两 个8字节内存块中。
总体来说:结构体的内存对⻬是拿空间来换取时间的做法。

 以32为机器为例,32位机器一次可以访问32位比特位的数据,

如果没有对齐规则,就像左边,机器要访问两次才可以得到 int i 的值,

有对齐规则,就像右边,想要访问 i ,只需要访问一次就足够了。

对齐规则的思想:把数据放在机器可以一次访问得到数据的空间内,使访问更具效率。 

f8a8927cd0f343869f356c4706bb6311.png   

修改默认对齐数

当结构体的对齐方式不适合时,我们也可以修改默认对齐数。

  • 在括号填写数字,对默认对齐数进行修改。
  • 如果()内没有数字,则时将默认对齐数恢复到默认值。
#pragma pack()

下面的struct S原本是占据12个字节的空间,对默认对齐数进行修改后,只占据6个字节的空间。 

#include <stdio.h>
#pragma pack(1)//设置默认对⻬数为1
struct S
{char c1;int i;char c2;
};
#pragma pack()//取消设置的对⻬数,还原为默认
int main()
{//输出的结果是什么?printf("%d\n", sizeof(struct S));return 0;
}
0ca731e68b5c4920b09113e7131a054a.png

           

 结构体传参

  • 传值调用,将数据通过参数传过去,然后函数print会创立独立的空间,对传过来的数据进行存储
  • 传址调用,将数据的地址传过去,函数通过指向数据的地址对数据进行使用,不需要再建立空间对数据进行存放。
#include<stdio.h>
struct S
{int data[1000];int num;
};
void print1(struct S ss)
{int i = 0;for (i = 0; i < 3; i++){printf("%d ", ss.data[i]);}printf("%d\n", ss.num);
}
void print2(struct S* ps)
{int i = 0;for (i = 0; i < 3; i++){printf("%d ", ps->data[i]);}printf("%d\n", ps->num);
}
int main()
{struct S s = { {1,2,3},100 };print1(s);print2(&s);return 0;
}

b2d177f2dc1c40c6b3b1b06078388bec.png

        

上面的传值调用print1 和 传址调用print2 函数那哪个更好?

答案是:⾸选print2函数。
原因:
函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递⼀个结构体对象的时候,结构体过⼤,参数压栈的的系统开销⽐较⼤,所以会导致性能的下降。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/266024.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

# 一些视觉-激光、加速度传感器类的铣削振动测试方法案例

一些视觉-激光类的铣削振动测试方法 1. 基于激光测振仪的振动测试2. 切削加工的 加速度传感器实测信号2.1 x轴向信号2.2 Y轴向信号3. 关于数值频域积分1. 基于激光测振仪的振动测试 【1】舜宇LDV|激光测振—机床铣刀寿命预测 新刀具为100hz主频 旧刀具为800hz主频 方法原理:…

C# OpenCvSharp DNN 部署YOLOV6目标检测

目录 效果 模型信息 项目 代码 下载 C# OpenCvSharp DNN 部署YOLOV6目标检测 效果 模型信息 Inputs ------------------------- name&#xff1a;image_arrays tensor&#xff1a;Float[1, 3, 640, 640] -------------------------------------------------------------…

被忽悠选择那些价格昂贵的知识付费平台?我有才知识服务平台手把手教你如何正确选择!

在当今的知识经济时代&#xff0c;一个高效、便捷的知识服务平台对于企业和个人至关重要。然而&#xff0c;市面上的众多知识服务平台中&#xff0c;许多产品存在高昂的费用、无用功能的堆砌、无法定制化等问题&#xff0c;让用户进退两难&#xff0c;甚至被忽悠掉入使用陷阱。…

Leo赠书活动-13期 【以企业架构为中心的SABOE数字化转型五环法】文末送书

Leo赠书活动-13期 【以企业架构为中心的SABOE数字化转型五环法】文末送书 ✅作者简介&#xff1a;大家好&#xff0c;我是Leo&#xff0c;热爱Java后端开发者&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f34e;个人主页&#xff1a;Leo的博客…

力扣77. 组合(java 回溯法)

Problem: 77. 组合 文章目录 题目描述思路解题方法复杂度Code 题目描述 思路 题目要求给出1-n中每k个数一组的所有组合&#xff0c;我们可以利用回溯&#xff0c;将其穷举出来&#xff0c;具体的&#xff1a; 1.以数字1-n为回溯的决策阶段&#xff0c;回溯的起始阶段为1 2.回溯…

外汇天眼:掌握这个技巧,你也能成为交易高手

在金融市场这个大潮中&#xff0c;外汇交易因其高杠杆、24小时交易等特点吸引着无数交易者。然而成功的交易并非易事&#xff0c;对于投资者来说&#xff0c;外汇交易市场是一个复杂且多变的市场&#xff0c;要在外汇市场中获得成功就需要扎实的外汇金融基础知识和独特的策略&a…

「实用教程」win32spl.dll文件的作用及修复方法分享

本文将为您详细介绍Win32spl.dll文件的作用、丢失原因以及提供5个修复教程&#xff0c;帮助您解决这一问题。 一、Win32spl.dll文件的作用 Win32spl.dll是一个动态链接库文件&#xff0c;它是Windows操作系统中的一个重要组件。该文件主要负责处理系统启动时的一些操作&#…

【LeetCode刷题】-- 118.杨辉三角

118.杨辉三角 class Solution {public List<List<Integer>> generate(int numRows) {List<List<Integer>> res new ArrayList<List<Integer>>();for(int i 0; i < numRows;i){List<Integer> ret new ArrayList<>();for(…

Docker中部署ElasticSearch 和Kibana,用脚本实现对数据库资源的未授权访问

图未保存&#xff0c;不过文章当中的某一步骤可能会帮助到您&#xff0c;那么&#xff1a;感恩&#xff01; 1、docker中拉取镜像 #拉取镜像 docker pull elasticsearch:7.7.0#启动镜像 docker run --name elasticsearch -d -e ES_JAVA_OPTS"-Xms512m -Xmx512m" -e…

入职字节外包一个月,我离职了。。。

有一种打工人的羡慕&#xff0c;叫做“大厂”。 真是年少不知大厂香&#xff0c;错把青春插稻秧。 但是&#xff0c;在深圳有一群比大厂员工更庞大的群体&#xff0c;他们顶着大厂的“名”&#xff0c;做着大厂的工作&#xff0c;还可以享受大厂的伙食&#xff0c;却没有大厂…

react Hooks(useRef、useMemo、useCallback)实现原理

Fiber 上篇文章fiber简单理解记录了react fiber架构&#xff0c;Hooks是基于fiber链表来实现的。阅读以下内容时建议先了解react fiber。 jsx -> render function -> vdom -> fiber树 -> dom vdom 转 fiber 的过程称为 recocile。diff算法就是在recocile这个过程…

Android渲染-AHardwareBuffer

本文主要从应用的角度介绍android的native层AHardwareBuffer创建纹理以及保存渲染数据。 HardwareBuffer 要介绍native层的AHardwareBuffer&#xff0c;就需要先从Java层的HardwareBuffer说起。Android官方对于HardwareBuffer介绍如下&#xff1a; HardwareBuffer wraps a na…