LeetCode-1008. 前序遍历构造二叉搜索树【栈 树 二叉搜索树 数组 二叉树 单调栈】

LeetCode-1008. 前序遍历构造二叉搜索树【栈 树 二叉搜索树 数组 二叉树 单调栈】

  • 题目描述:
  • 解题思路一:题目大致意思就是给定一个二叉树的前序遍历,求对应的二叉搜索树。一种比较特殊的点是「二叉搜索树」的中序遍历的结果是【有序序列】,故而我们可以对「前序遍历」的结果 【排序】 得到「中序遍历」的结果。从而依据这棵树的前序和中序遍历结果构建该「二叉搜索树」。
  • 解题思路二:二分查找左右子树的分界线递归构建左右子树。可以找到的规律是前序遍历结果第一个是根节点,而后面的元素可以分为两个连续的数组,一个数组所有元素严格小于根节点,另一个数组所有元素严格大于根节点。困难在于快速找到这两个数组的分界线,这里用的是二分法。
  • 解题思路三:根据数值上下界递归构建左右子树,我们使用递归的方法,在扫描先序遍历的同时构造出二叉树。我们在递归时维护一个 (lower, upper) 二元组,表示当前位置可以插入的节点的值的上下界。如果此时先序遍历位置的值处于上下界中,就将这个值作为新的节点插入到当前位置,并递归地处理当前位置的左右孩子的两个位置。否则回溯到当前位置的父节点。
  • 解题思路四:单调栈,思路是维护一个栈顶小栈顶大的单调栈,遍历一遍前序遍历结果。如果当前元素大于栈顶元素,则循环出栈找到其父节点node。如果父节点的元素值小于子节点的元素值,则子节点为右孩子,否则为左孩子。代码逻辑其实很简单。

题目描述:

给定一个整数数组,它表示BST(即 二叉搜索树 )的 先序遍历 ,构造树并返回其根。

保证 对于给定的测试用例,总是有可能找到具有给定需求的二叉搜索树。

二叉搜索树 是一棵二叉树,其中每个节点, Node.left 的任何后代的值 严格小于 Node.val , Node.right 的任何后代的值 严格大于 Node.val。

二叉树的 前序遍历 首先显示节点的值,然后遍历Node.left,最后遍历Node.right。

示例 1:
请添加图片描述
输入:preorder = [8,5,1,7,10,12]
输出:[8,5,10,1,7,null,12]

示例 2:
输入: preorder = [1,3]
输出: [1,null,3]

提示:
1 <= preorder.length <= 100
1 <= preorder[i] <= 10^8
preorder 中的值 互不相同

解题思路一:题目大致意思就是给定一个二叉树的前序遍历,求对应的二叉搜索树。一种比较特殊的点是「二叉搜索树」的中序遍历的结果是【有序序列】,故而我们可以对「前序遍历」的结果 【排序】 得到「中序遍历」的结果。从而依据这棵树的前序和中序遍历结果构建该「二叉搜索树」。

对应的题目是105. 从前序与中序遍历序列构造二叉树,感兴趣的可以看看。

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:def bstFromPreorder(self, preorder: List[int]) -> Optional[TreeNode]:inorder = sorted(preorder)def myBST(preorder_left: int, preorder_right: int, inorder_left: int, inorder_right: int):if preorder_left > preorder_right:return None# 前序遍历中的第一个节点就是根节点preorder_root = preorder_left# 在中序遍历中定位根节点inorder_root = index[preorder[preorder_root]]# 先把根节点建立出来root = TreeNode(preorder[preorder_root])# 得到左子树中的节点数目size_left_subtree = inorder_root - inorder_left# 递归地构造左子树,并连接到根节点# 先序遍历中「从 左边界+1 开始的 size_left_subtree」个元素就对应了中序遍历中「从 左边界 开始到 根节点定位-1」的元素root.left = myBST(preorder_left + 1, preorder_left + size_left_subtree, inorder_left, inorder_root - 1)# 递归地构造右子树,并连接到根节点# 先序遍历中「从 左边界+1+左子树节点数目 开始到 右边界」的元素就对应了中序遍历中「从 根节点定位+1 到 右边界」的元素root.right = myBST(preorder_left + 1 + size_left_subtree, preorder_right, inorder_root + 1, inorder_right)return rootn = len(preorder)index = {element: i for i, element in enumerate(inorder)}return myBST(0, n-1, 0, n-1)

构造哈希表的目的是为了,O(1)时间找到中序遍历结果中的根节点。
时间复杂度:O(nlogn)排序的结果,构造二叉搜索树的时间复杂度为 O(n)
空间复杂度:O(n)

解题思路二:二分查找左右子树的分界线递归构建左右子树。可以找到的规律是前序遍历结果第一个是根节点,而后面的元素可以分为两个连续的数组,一个数组所有元素严格小于根节点,另一个数组所有元素严格大于根节点。困难在于快速找到这两个数组的分界线,这里用的是二分法。

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:def bstFromPreorder(self, preorder: List[int]) -> Optional[TreeNode]:def dfs(preorder: List[int], left: int, right: int):if left > right: return Noneroot = TreeNode(preorder[left])if left == right: return rootl, r = left, rightwhile(l < r):mid = int(l + (r - l + 1) / 2)if preorder[mid] < preorder[left]: l = mid # 转到区间[mid, r]else : r = mid -1 # 转到区间[l, mid -1]# 其实最后l=r是最终的分界线root.left = dfs(preorder, left + 1, l)root.right = dfs(preorder, l + 1, right)return rootn = len(preorder)if n==0: return nullreturn dfs(preorder, 0, n-1)

时间复杂度:O(nlogn),在找左右子树分界线的时候时间复杂度为O(logn);
空间复杂度:O(n)

解题思路三:根据数值上下界递归构建左右子树,我们使用递归的方法,在扫描先序遍历的同时构造出二叉树。我们在递归时维护一个 (lower, upper) 二元组,表示当前位置可以插入的节点的值的上下界。如果此时先序遍历位置的值处于上下界中,就将这个值作为新的节点插入到当前位置,并递归地处理当前位置的左右孩子的两个位置。否则回溯到当前位置的父节点。

请添加图片描述

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:def bstFromPreorder(self, preorder: List[int]) -> Optional[TreeNode]:n = len(preorder)index = 0def dfs(lowerBound: int, upperBound: int):nonlocal index  # 将index声明为非局部变量if index == n: return Nonecur = preorder[index]if cur < lowerBound or cur > upperBound: return Noneindex += 1root = TreeNode(cur)root.left = dfs(lowerBound, cur)root.right = dfs(cur, upperBound)return rootif n==0: return nullreturn dfs(float('-inf'), float('inf'))

时间复杂度:O(n)
空间复杂度:O(n)

解题思路四:单调栈,思路是维护一个栈顶小栈顶大的单调栈,遍历一遍前序遍历结果。如果当前元素大于栈顶元素,则循环出栈找到其父节点node。如果父节点的元素值小于子节点的元素值,则子节点为右孩子,否则为左孩子。代码逻辑其实很简单。

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:def bstFromPreorder(self, preorder: List[int]) -> Optional[TreeNode]:n = len(preorder)if n==0: return nullroot = TreeNode(preorder[0])stack= [root]for i in range(1,n,1):node = stack[-1]currentNode = TreeNode(preorder[i])while stack and stack[-1].val < currentNode.val: node = stack.pop()if node.val < currentNode.val: node.right = currentNodeelse : node.left = currentNodestack.append(currentNode)return root

时间复杂度:O(n)仅扫描前序遍历一次。
空间复杂度:O(n)用来存储栈和二叉树。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/266453.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

学习人工智能-基础篇

背景 随着大模型的火爆&#xff0c;人工智能再次被推到高潮&#xff0c;其实它在众多行业领域已经落地很多应用&#xff0c;并给社会带来了巨大的经济价值。其中包括互联网、教育、金融、医疗、交通、物流等等。在测试领域也有一些落地的案例&#xff0c;作为测试人员&#xf…

WooCommerce商城个人微信支付网关 适合个人微信收款

点击获取WooCommerce商城个人微信支付网关 适合个人微信收款原文https://gplwp.eastfu.com/product/woocommerce-ge-ren-wei-xin-zhi-fu-wang-guan-shi-he-ge-ren/ 个人微信支付网关接口&#xff0c;无需提现&#xff0c;100%资金安全&#xff0c;官方清算&#xff0c;金额无限…

STM32F407-14.1.0-01高级定时器简介

TIM1 和 TIM8 简介 高级控制定时器&#xff08;TIM1 和 TIM8&#xff09;包含一个 16 位自动重载计数器&#xff0c;该计数器由可编程预分频器驱动。 此类定时器可用于各种用途&#xff0c;包括测量输入信号的脉冲宽度&#xff08;输入捕获&#xff09;&#xff0c;或者生成输出…

软件运行原理 - 内存模型 - 栈内存

说明 C/C软件运行时&#xff0c;内存根据使用方式的不同分为堆内存和栈内存&#xff0c;栈内存使用有以下特征&#xff1a; 栈内存使用&#xff08;申请、释放&#xff09;由系统自动分配和释放&#xff0c;程序员不用做任何操作。栈内存重复使用&#xff0c;进入函数时数据入…

vscode汉化

安装插件 Chinese (Simplified) (简体中文) Language Pack for 重新打开&#xff0c;若还是没有汉化&#xff1a; 【CtrlShiftp】 输入“configure display language”&#xff0c;回车键 选择刚刚安装的 中文(简体)

Oracle(2-15)RMAN Incomplete Recovery

文章目录 一、基础知识1、The Procedure 不完全恢复步骤2、UNTIL TIME Example 基于时间的恢复3、UNTIL SEOUENCE Example 基于序列的恢复 二、基础操作1、不完全恢复准备工作2、不完全恢复开始恢复 RMAN Incomplete Recovery RMAN的不完全恢复 目标&#xff1a; 使用“UNTIL T…

使用MFC实现数据输出真的好方便(C++)

void CMFCApplication1Dlg::OnEnKillfocusEdit1() { //失去焦点就在上部的框显示 CString cont; GetDlgItemTextW(IDC_STATIC2, cont); cont L"你好啊\n"; SetDlgItemTextW(IDC_STATIC2,cont); // TODO: 在此添加控件通知处理程序代码 }

Breach 1.0

靶机环境 该靶机的ip地址配置的是静态IP地址&#xff0c;192..168.110.140 因此我们直接利用仅主机模式&#xff0c;配置为网段192.168.110.0/24网段即可&#xff01; kali攻击机上配置两个网卡&#xff01;一个用于访问靶机&#xff0c;另一个网卡适用于出网&#xff01; 信…

JVM性能调优

遇到以下情况&#xff0c;就需要考虑进行JVM调优了&#xff1a; Heap内存&#xff08;老年代&#xff09;持续上涨达到设置的最大内存值&#xff1b; Full GC 次数频繁&#xff1b; GC 停顿时间过长&#xff08;超过1秒&#xff09;&#xff1b; 应用出现OutOfMemory 等内存异常…

力扣111. 二叉树的最小深度

给定一个二叉树&#xff0c;找出其最小深度。 最小深度是从根节点到最近叶子节点的最短路径上的节点数量。 说明&#xff1a;叶子节点是指没有子节点的节点。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;2 示例 2&#xff1a; 输入…

使用pe安装windows操作系统

一、系统安装前准备工作&#xff0c;制作系统盘 &#xff08;1&#xff09;拷贝电脑上的资料 &#xff08;2&#xff09;准备一个至少8G的U盘 &#xff08;3&#xff09;下载windows镜像文件及pe软件 通过百度网盘可下载下列软件及镜像 windows镜像文件&#xff08;百度网盘…

Leetcode刷题笔记题解(C++):LCR 121. 寻找目标值 - 二维数组

思路&#xff1a;从左小角或者右上角开始遍历&#xff0c;假设右上角开始遍历&#xff0c;如果当前值大于目标值则列-1&#xff1b;如果当前值小于目标值则行1&#xff0c;以此遍历来查找目标值&#xff1b;注意col和row的选取 class Solution { public:bool findTargetIn2DPl…