智能优化算法应用:基于混合蛙跳算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于混合蛙跳算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于混合蛙跳算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.混合蛙跳算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用混合蛙跳算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.混合蛙跳算法

混合蛙跳算法原理请参考:https://blog.csdn.net/u011835903/article/details/108294230
混合蛙跳算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

混合蛙跳算法参数如下:

%% 设定混合蛙跳优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明混合蛙跳算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/266987.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vite+vue3+ts+tsx+ant-design-vue项目框架搭建

参与公司项目开发一段时间了,项目用到了很多新的技术(vite,vue3,ts等等),但是框架都是别人搭好的,然后就想说如果是自己的话,会从零搭建一个吗,于是就有了这篇文章。 目录 一、涉及到的相关依…

day01、什么是数据库系统?

数据库系统介绍 1.实例化与抽象化数据库系统2.从用户角度看数据库管理系统的功能2.1 数据库定义功能2.2 数据库操纵2.3 数据库控制2.4 数据库维护功能2.5 数据库语言与高级语言 3.从系统:数据库管理系统应具有什么功能 来源于战德臣的B站网课 1.实例化与抽象化数据库…

【Docker】进阶之路:(十一)Docker存储

【Docker】进阶之路:(十一)Docker存储 Docker存储简介storage driverdata volumevolumebind mounttmpfs mount Docker提供了4种存储方式:默认存储、volume(数据卷)、bind mounts(绑定挂载)、tmpfsmount(仅在Linux环境中提供)。其中…

Linux——Web网站服务(二)

一、httpd服务的访问控制 1、客户机地址限制 通过Require配置项&#xff0c;可以根据主机的主机名或P地址来决定是否允许客户端访问。在 httpd服务器的主配置文件的<Location>&#xff0c;<Directory>、<Files>、<Limit>配置段中均可以使用Require配置…

Day57力扣打卡

打卡记录 最小体力消耗路径 链接 Dijkstra 将Dijkstra算法从计算最短路径转化为计算路径最大差值。 class Solution:def minimumEffortPath(self, heights: List[List[int]]) -> int:n, m len(heights), len(heights[0])dist [0] [0x3f3f3f3f] * (n * m - 1)vis set…

软件测试之压力测试详解

一、什么是压力测试 软件测试中&#xff1a;压力测试&#xff08;Stress Test&#xff09;&#xff0c;也称为强度测试、负载测试。压力测试是模拟实际应用的软硬件环境及用户使用过程的系统负荷&#xff0c;长时间或超大负荷地运行测试软件&#xff0c;来测试被测系统的性能、…

mysql数据库学习笔记(1)

今天开始学mysql数据库&#xff0c;为什么要学这个呢&#xff0c;因为数据库可结构化存储大量的数据信息&#xff0c;方便用户进行有效的检索和访问。数据库可有效地保持数据信息的一致性、完整性、降低数据冗余。数据库可满足应用的共享和安全方面的要求&#xff0c;把数据放在…

大数据技术10:Flink从入门到精通

导语&#xff1a;前期入门Flink时&#xff0c;可以直接编写通过idea编写Flink程序&#xff0c;然后直接运行main方法&#xff0c;无需搭建环境。我碰到许多初次接触Flink的同学&#xff0c;被各种环境搭建、提交作业、复杂概念给劝退了。前期最好的入门方式就是直接上手写代码&…

开源治理典型案例分享(汇编转)

当前&#xff0c;越来越多的企业申请通过信通院的开源治理成熟度评估和认证&#xff0c;获得增强级或先进级评估。这些企业包括中国工商银行股份有限公司、中国农业银行、上海浦东发展银行股份有限公司、中信银行股份有限公司、中国太平洋保险&#xff08;集团&#xff09;股份…

Maven项目引入本地jar

Maven项目引入本地jar 1.对应maven模块项目中建lib目录&#xff0c;将jar放入进去 2.在对应的模块pom.xml中引入此依赖jar 3.在对应的maven-plugin插件打包的pom.xml中指定需要includeSystemScope为true的jar

VSCode使用Remote-SSH连接服务器时报错:无法与“***”建立连接: XHR failed.

关于VSCode的报错问题&#xff1a;无法与“***”建立连接: XHR failed 问题描述问题理解解决方法手动在本地下载安装包&#xff0c;然后手动传到服务器端 问题描述 是的&#xff0c;我又踩坑了&#xff0c;而且这个弄了好久&#xff0c;也重新装了VSCode软件&#xff0c;好像结…

赛宁网安多领域亮相第三届网络空间内生安全发展大会

2023年12月8日&#xff0c;第三届网络空间内生安全发展大会在宁开幕。两院院士、杰出专家学者和知名企业家相聚南京&#xff0c;围绕数字经济新生态、网络安全新范式进行广泛研讨&#xff0c;为筑牢数字安全底座贡献智慧和力量。 大会围绕“一会、一赛、一展”举办了丰富多彩的…