图论专栏一《图的基础知识》

图论(Graph Theory)是数学的一个分支。它以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些实体之间的某种特定关系,用点代表实体,用连接两点的线表示两个实体间具有的某种关系。
相比矩阵、张量、序列等结构,图结构可以有效建模和解决社会关系、交通网络、文法结构和论文引用等需要考虑实体间关系的各种实际问题。因此,为了能够有效利用图结构这种工具,我们必须要对图的定义、类型和性质有一定的认识。

 概念

图是由顶点(vertex)和边(edge)组成的数据结构

如下图:

节点(node)用红色标出,通过黑色的边(edge)连接。

图可用于表示:

  • 社交网络
  • 网页
  • 生物网络

我们可以在图上执行怎样的分析?

  • 研究拓扑结构和连接性
  • 群体检测
  • 识别中心节点
  • 预测缺失的节点
  • 预测缺失的边

为了方便大家的学习,下面我先来介绍一下图的基本术语。

基本术语

图的分类

有向图(Directed Graph):

  • 在有向图中,每条边都有一个方向,从一个顶点指向另一个顶点。
  • 如果顶点 A 到顶点 B 有一条有向边,则我们称顶点 A 直接指向顶点 B。这意味着从顶点 A 出发可以到达顶点 B,但反之则不一定成立。
  • 有向图常用于表示具有方向性关系的问题,例如交通流向、网页链接、任务依赖关系等。

无向图(Undirected Graph):

  • 在无向图中,边没有方向,即连接两个顶点的边可以被看作是双向的。
  • 如果顶点 A 与顶点 B 之间有一条边,那么顶点 A 与顶点 B 之间是相互连通的,可以双向移动。
  • 无向图常用于表示无方向性关系的问题,例如社交网络中的好友关系、道路交通图等。

无向完全图:无向图中,任意两个顶点之间都存在边。

有向完全图:有向图中,任意两个顶点之间都存在方向互为相反的两条弧。

简单图:图中不存在顶点到其自身的边,且同一条边不重复出现。

稀疏图:有很少条边。

稠密图:有很多条边。

子图(Subgraph):假设G=(V,{E})和G‘=(V',{E'}),如果V'包含于V且E'包含于E,则称G'为G的子图。

:顶点之间的逻辑关系用边来表示,边集可以是空的。

无向边(Edge):若顶点V1到V2之间的边没有方向,则称这条边为无向边。

无向图(Undirected graphs):图中任意两个顶点之间的边都是无向边。(A,D)=(D,A)

    对于无向图G来说,G1=(V1,{E1}),其中顶点集合V1={A,B,C,D};边集和E1={(A,B),(B,C),(C,D),(D,A),(A,C)}

有向边:若从顶点V1到V2的边有方向,则称这条边为有向边,也称弧(Arc)。用<V1,V2>表示,V1为弧尾(Tail),V2为弧头(Head)。(V1,V2)≠(V2,V1)。

是指与该顶点相邻的边的数量。

例如上图图中

  • A、B、C、E、F 这几个顶点度数为 2

  • D 顶点度数为 4

有向图中,细分为入度出度,参见下图

分析上图可知个顶点的出度与入度如下:
  • A (2 out / 0 in)   两个出度,没有入度

  • B、C、E (1 out / 1 in)

  • D (2 out / 2 in)

  • F (0 out / 2 in)

边可以有权重,代表从源顶点到目标顶点的距离、费用、时间或其他度量。

路径

路径被定义为从一个顶点到另一个顶点的一系列连续边,例如上图中【北京】到【上海】有多条路径。

  • 北京 - 上海

  • 北京 - 武汉 - 上海

路径长度

  • 不考虑权重,长度就是边的数量

  • 考虑权重,一般就是权重累加

有向图中,从一个顶点开始,可以通过若干条有向边返回到该顶点,那么就形成了一个环。

如下图:

图的连通性

如果两个顶点之间存在路径,则这两个顶点是连通的,所有顶点都连通,则该图被称之为连通图,若子图连通,则称为连通分量

graph LRA --- BA --- CC --- DD --- EB --- EF --- GG --- HH --- FI --- J

根据上面给出的点与点之间的连通性,可得出下图:

强连通分量:有向图中的极大强连通子图。

生成树:无向图中连通且n个顶点n-1条边叫生成树。

有向树:有向图中一顶点入度为0其余顶点入度为1。

森林:一个有向图由若干棵有向树构成生成森林。

图的表示方法

图可以用邻接矩阵和邻接表表示

比如说,下面的图

邻接矩阵可以表示为:

  A B C D
A 0 1 1 0
B 1 0 0 1 
C 1 0 0 1
D 0 1 1 0

邻接表可以表示为:

A -> B -> C
B -> A -> D
C -> A -> D
D -> B -> C

有向图的例子:

graph LR
    A--->B
    A--->C
    B--->D
    C--->D

邻接矩阵可以表示为:

    A  B  C  D
A  0  1  1   0
B  0  0  0   1
C  0  0  0   1
D  0  0  0   0

邻接表可以表示为:

A - B - C
B - D
C - D
D - empty

图的存储结构

邻接矩阵

邻接矩阵:用两个数组,一个数组保存顶点集,一个数组保存边集。

无向图

无向图的邻接矩阵如图

代码示例

我们先将表示顶点和边的类定义出来

假设顶点的类型为 Vertex

class Vertex {int value;// 其他顶点属性
}

假设边的类型为 Edge

class Edge {int startVertexId;int endVertexId;// 其他边属性
}
class Graph {Vertex[] vertices;Edge[] edges;int[][] adjacencyMatrix;public Graph(Vertex[] vertices, Edge[] edges) {this.vertices = vertices;this.edges = edges;this.adjacencyMatrix = new int[vertices.length][vertices.length];// 初始化邻接矩阵,将相应位置设为 1 表示边的连接关系for (Edge edge : edges) {adjacencyMatrix[edge.startVertexId][edge.endVertexId] = 1;// 如果是无向图还需要设置对称位置adjacencyMatrix[edge.endVertexId][edge.startVertexId] = 1;}}
}
有向图

有向图的邻接矩阵如图

代码示例

class Digraph {Vertex[] vertices;Edge[] edges;int[][] adjacencyMatrix;public Digraph(Vertex[] vertices, Edge[] edges) {this.vertices = vertices;this.edges = edges;this.adjacencyMatrix = new int[vertices.length][vertices.length];// 初始化邻接矩阵,将相应位置设为 1 表示边的连接关系for (Edge edge : edges) {adjacencyMatrix[edge.startVertexId][edge.endVertexId] = 1;}}
}

邻接表

邻接表:数组与链表相结合的存储方法。

邻接表表示法(链式)表示如下图:

  • 顶点: 按编号顺序将顶点数据存储在一维数组中。
  • 关联同一顶点的边: 用线性链表存储。
  • 如果有边\弧的信息,还可以在表结点中增加一项,

无向图

无向图的邻接表如下图:

特点:

  • 邻接表不唯一
  • 若无向图中有n个顶点、e条边,则其邻接表需要n个头结点和2e个表结点。适宜存储稀疏图。
  • 无向图中顶点vi的度为第i个单链表中的结点数
     

代码示例

import java.util.ArrayList;
import java.util.List;class Graph {int numVertices;List<List<Integer>> adjacencyList;public Graph(int numVertices) {this.numVertices = numVertices;this.adjacencyList = new ArrayList<>(numVertices);// 初始化邻接表for (int i = 0; i < numVertices; i++) {adjacencyList.add(new ArrayList<>());}}public void addEdge(int src, int dest) {// 添加双向边的连接关系adjacencyList.get(src).add(dest);adjacencyList.get(dest).add(src);}
}
有向图

特点:

  • 顶点vi的出度为第i个单链表中的结点个数。
  • 顶点vi的入度为整个单链表中邻接点域值是i-1的结点个数。
  • 找出度易,找入度难

逆邻接表:

逆邻接表特点:

  • 顶点vi​的入度为第i个单链表中的结点个数。
  • 顶点vi的出度为整个单链表中邻接点域值是i-1的结点个数。
  • 找入度易,找出度难。

当邻接表的存储结构形成后,图便唯一确定。

代码示例:

import java.util.ArrayList;
import java.util.List;class Digraph {int numVertices;List<List<Integer>> adjacencyList;public Digraph(int numVertices) {this.numVertices = numVertices;this.adjacencyList = new ArrayList<>(numVertices);// 初始化邻接表for (int i = 0; i < numVertices; i++) {adjacencyList.add(new ArrayList<>());}}public void addEdge(int src, int dest) {// 添加单向边的连接关系adjacencyList.get(src).add(dest);}
}

图的遍历

广度优先遍历(BFS)

广度优先遍历(Breadth First Search),又称为广度优先搜索,简称BFS。是一种分层的查找过程,每向前走一步可能访问一批顶点,不像深度优先搜索那样有往回退的情况,因此它不是一个递归的算法。为了实现逐层的访问,算法必须借助一个辅助队列,以记忆正在访问的顶点的下一层顶点。
其实他本意就是,先遍历一个节点,然后遍历那个节点所连接的的周边节点,之后再一个结点一个结点的往外遍历,重复循环。

下面举个例子:

这张图,我们设从“3”开始遍历,运用广度优先的方法,那么我们所得到的遍历顺序为3,2,3,4,5,1

深度优先遍历(DFS)

所谓DFS,就是从起点开始,找准一个方向直到走不了为止,然后再原路返回,再找到一个能走的地方继续走的思路。

下面举个例子:

遍历顺序为:1,2,4,7,8,5,3,6

这里这两种算法,我只是概述一下,后面我还会写两篇博文来专门讲这两种遍历方式

上面差不多就是刷图论的题所需要具备的图的基础知识了,后续我会继续更新一些我在刷图论题的一些体会。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/267194.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【漏洞修复】Cisco IOS XE软件Web UI权限提升漏洞及修复方法

关于Cisco IOS XE软件Web UI权限提升漏洞及修复方法 文章目录 漏洞基本信息漏洞影响范围确认设备是否受影响漏洞修复方法推荐阅读 漏洞基本信息 Cisco IOS XE Unauthenticatd Remote Command Execution (CVE-2023-20198) (Direct Check) Severity:Critical Vulnerability Pri…

HeartBeat监控Mysql状态

目录 一、概述 二、 安装部署 三、配置 四、启动服务 五、查看数据 一、概述 使用heartbeat可以实现在kibana界面对 Mysql 服务存活状态进行观察&#xff0c;如有必要&#xff0c;也可在服务宕机后立即向相关人员发送邮件通知 二、 安装部署 参照章节&#xff1a;监控组件…

MySQL 教程 2.1.1

MySQL 插入数据 MySQL 表中使用 INSERT INTO 语句来插入数据。 你可以通过 mysql> 命令提示窗口中向数据表中插入数据&#xff0c;或者通过PHP脚本来插入数据。 语法 以下为向MySQL数据表插入数据通用的 INSERT INTO SQL语法&#xff1a; INSERT INTO table_name (colu…

前后端项目开发笔记-环境搭建(一)

一、从https://gitee.com/renrenio/renren-security下载代码 1、项目说明 renren-security是一个轻量级的&#xff0c;前后端分离的Java快速开发平台&#xff0c;能快速开发项目并交付【接私活利器】采用SpringBoot、Shiro、MyBatis-Plus、Vue3、TypeScript、Element Plus、V…

Nacos-NacosRule 负载均衡—设置集群使本地服务优先访问

userservice: ribbon: NFLoadBalancerRuleClassName: com.alibaba.cloud.nacos.ribbon.NacosRule # 负载均衡规则 NacosRule 权重计算方法 目录 一、介绍 二、示例&#xff08;案例截图&#xff09; 三、总结 一、介绍 NacosRule是AlibabaNacos自己实现的一个负载均衡策略&…

构建智能外卖跑腿小程序:技术实践与代码示例

在快节奏的现代生活中&#xff0c;外卖跑腿服务已成为人们日常生活中不可或缺的一部分。为了提供更智能、高效的外卖跑腿体验&#xff0c;本文将深入探讨构建一款智能外卖跑腿小程序所需的关键技术&#xff0c;并提供相应的代码示例。 1. 地理位置服务的整合 外卖跑腿小程序…

安防 音响 车载等产品中音频接口选型的高性能国产芯片分析

在人工智能兴起之后&#xff0c;安防市场就成为了其全球最大的市场&#xff0c;也是成功落地的最主要场景之一。对于安防应用而言&#xff0c;智慧摄像头、智慧交通、智慧城市等概念的不断涌现&#xff0c;对于芯片产业催生出海量需求。今天&#xff0c;我将为大家梳理GLOBALCH…

12.11QSS优化界面——对话框

完善对话框&#xff0c;点击登录对话框&#xff0c;如果账号和密码匹配&#xff0c;则弹出信息对话框&#xff0c;给出提示”登录成功“&#xff0c;提供一个Ok按钮&#xff0c;用户点击Ok后&#xff0c;关闭登录界面&#xff0c;跳转到其他界面 如果账号和密码不匹配&#xf…

2023年度总结

这一年一行代码都没写&#xff01;&#xff01;&#xff01; 因为我离开了这个行业&#xff0c;但我为了CSDN 这个位置没有空缺&#xff0c;不能留下遗憾&#xff0c;写下这篇博客吧。 强迫症&#xff0c;完美主义。。 留下三个问题吧 当初你为什么选择了计算机这个行业?现…

React Native android环境搭建,使用夜神模拟器进行开发(适用于0.73+版本)

前言 本文基于&#xff1a;“react-native” : “^0.73.0” 1.安装 Node Node.js&#xff0c;下载时选择 > 18 版本 2.下载并安装 JDK Java SE Development Kit (JDK)&#xff0c;下载时选择 17 版本 安装 验证是否安装成功 打开命令提示符输入 javac -version 回车 3.…

计算机毕业设计 基于Web的网上购物系统(pc端仿淘宝系统)的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…

多合一iPhone 解锁工具:iMyFone LockWiper iOS

多合一iPhone 解锁工具 无需密码解锁 iPhone/iPad/iPod touch 上所有类型的屏幕锁定 在几分钟内解锁 iPhone Apple ID、Touch ID 和 Face ID 立即绕过 MDM 并删除 iPhone/iPad/iPod touch 上的 MDM 配置文件 支持所有 iOS 版本和设备&#xff0c;包括最新的 iOS 17 和 iPhone 1…