【二者区别】cuda和cudatoolkit

Pytorch 使用不同版本的 cuda

  由于课题的原因,笔者主要通过 Pytorch 框架进行深度学习相关的学习和实验。在运行和学习网络上的 Pytorch 应用代码的过程中,不少项目会标注作者在运行和实验时所使用的 Pytorch 和 cuda 版本信息。由于 Pytorch 和 cuda 版本的更新较快,可能出现程序的编译和运行需要之前版本的 Pytorch 和 cuda 进行运行环境支持的情况。比如笔者遇到的某个项目中编写了 CUDAExtension 拓展,而其中使用的 cuda 接口函数在新版本的 cuda 中做了修改,使得直接使用系统上已有的新版本 cuda 时会无法编译使用。

  为了满足应用程序和框架本身对不同版本的 cuda 的需求,(如上面遇到的问题中,即需要 Pytorch 能够切换使用系统上不同版本的 cuda ,进而编译对应的 CUDAExtension),这里即记录笔者了解到的 Ubuntu 环境下 Pytorch 在编辑 cpp 和 cuda 拓展时确定所使用 cuda 版本的基本流程以及 Pytorch 使用不同版本的 cuda 进行运行的方法。 

cuda 与 cudatoolkit 的区别

  在使用 Anaconda 安装 Pytorch 深度学习框架时,可以发现 Anaconda 会自动为我们安装 cudatoolkit,如下图所示。

  

  上述安装的 cudatoolkit 与通过 Nvidia 官方提供的 CUDA Toolkit 是不一样的。具体而言,Nvidia 官方提供的 CUDA Toolkit 是一个完整的工具安装包,其中提供了 Nvidia 驱动程序、开发 CUDA 程序相关的开发工具包等可供安装的选项。使用 Nvidia 官网提供的 CUDA Toolkit 可以安装开发 CUDA 程序所需的工具,包括 CUDA 程序的编译器、IDE、调试器等,CUDA 程序所对应的各式库文件以及它们的头文件。上述 CUDA Toolkit 的具体组成可参考 CUDA Toolkit Major Componentsicon-default.png?t=N7T8https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#major-components        实际上,Nvidia 官方提供安装的 CUDA Toolkit 包含了进行 CUDA 相关程序开发的编译、调试等过程相关的所有组件。但对于 Pytorch 之类的深度学习框架而言,其在大多数需要使用 GPU 的情况中只需要使用 CUDA 的动态链接库支持程序的运行( Pytorch 本身与 CUDA 相关的部分是提前编译好的 ),就像常见的可执行程序一样,不需要重新进行编译过程,只需要其所依赖的动态链接库存在即可正常运行。故而,Anaconda 在安装 Pytorch 等会使用到 CUDA 的框架时,会自动为用户安装 cudatoolkit,其主要包含应用程序在使用 CUDA 相关的功能时所依赖的动态链接库。在安装了 cudatoolkit 后,只要系统上存在与当前的 cudatoolkit 所兼容的 Nvidia 驱动,则已经编译好的 CUDA 相关的程序就可以直接运行,而不需要安装完整的 Nvidia 官方提供的 CUDA Toolkit .

  通过 Anaconda 安装的应用程序包位于安装目录下的 /pkg 文件夹中,如笔者的目录即为 /home/xxx/anaconda3/pkgs/ ,用户可以在其中查看 conda 安装的 cudatoolkit 的内容,如下图所示。可以看到 conda 安装的 cudatoolkit 中主要包含的是支持已经编译好的 CUDA 程序运行的相关的动态链接库。( Ubuntu 环境下 )

  

  在大多数情况下,上述 cudatoolkit 是可以满足 Pytorch 等框架的使用需求的。但对于一些特殊需求,如需要为 Pytorch 框架添加 CUDA 相关的拓展时( Custom C++ and CUDA Extensions ),需要对编写的 CUDA 相关的程序进行编译等操作,则需安装完整的 Nvidia 官方提供的 CUDA Toolkit.

  本文的后续内容,即对应的是当 Pytorch 等框架需要编译对应的 CUDA 相关拓展程序时,如何设置使用不同版本的 cuda toolkit( 完整的包含有编译器的安装包 )对程序进行编译,进而满足特定的 CUDA 版本依赖。

Pytorch 确定所使用的 cuda 版本

  实际使用过程中,Pytorch 检测运行时使用的 cuda 版本的代码位于 torch/utils/cpp_extension.py 的_find_cuda_home 函数  ( Pytorch 1.1.0, Line 24 )中.这里主要介绍 Linux 环境下的 cuda 版本的确认过程,关于 Windows 环境下多版本 cuda 的使用可以参考上述文件中的具体实现.

  确定 cuda 路径

  若在运行时需要使用 cuda 进行程序的编译或其他 cuda 相关的操作,Pytorch 会首先定位一个 cuda 安装目录( 来获取所需的特定版本 cuda 提供的可执行程序、库文件和头文件等文件 )。具体而言,Pytorch 首先尝试获取环境变量 CUDA_HOME/CUDA_PATH 的值作为运行时使用的 cuda 目录。若直接设置了 CUDA_HOME/CUDA_PATH 变量,则 Pytorch 使用 CUDA_HOME/CUDA_PATH 指定的路径作为运行时使用的 cuda 版本的目录。

  若上述环境变量不存在,则 Pytorch 会检查系统是否存在固定路径 /usr/local/cuda 。默认情况下,系统并不存在对环境变量 CUDA_HOME 设置,故而 Pytorch 运行时默认检查的是 Linux 环境中固定路径 /usr/local/cuda 所指向的 cuda 目录。 /usr/local/cuda 实际上是一个软连接文件,当其存在时一般被设置为指向系统中某一个版本的 cuda 文件夹。使用一个固定路径的软链接的好处在于,当系统中存在多个安装的 cuda 版本时,只需要修改上述软连接实际指向的 cuda 目录,而不需要修改任何其他的路径接口,即可方便的通过唯一的路径使用不同版本的 cuda. 如笔者使用的服务器中,上述固定的 /usr/local/cuda 路径即指向一个较老的 cuda-8.0 版本的目录。  

  需要注意的是, /usr/local/cuda 并不是一个 Linux 系统上默认存在的路径,其一般在安装 cuda 时创建( 为可选项,不强制创建 )。故而 Pytorch 检测上述路径时也可能会失败。   

  若 CUDA_HOME 变量指定的路径和默认路径 /usr/local/cuda 均不存在安装好的 cuda 目录,则 Pytorch 通过运行命令 which nvcc 来找到一个包含有 nvcc 命令的 cuda 安装目录,并将其作为运行时使用的 cuda 版本。具体而言,系统会根据环境变量 PATH 中的目录去依次搜索可用的 nvcc 可执行文件,若环境变量 PATH 中包含多个安装好的 cuda 版本的可执行文件目录( 形如/home/test/cuda-10.1/bin ),则排在 PATH 中的第一个 cuda 的可执行文件目录中的 nvcc 命令会被选中,其所对应的路径被选为 Pytorch 使用的 cuda 路径。同样的,若 PATH 中不存在安装好的 cuda 版本的可执行目录,则上述过程会失败,Pytorch 最终会由于找不到可用的 cuda 目录而无法使用 cuda.比较推荐的做法是保持 PATH 路径中存在唯一一个对应所需使用的 cuda 版本的可执行目录的路径。

  在确定好使用的 cuda 路径后,基于 cuda 的 Pytorch 拓展即会使用确定好的 cuda 目录中的可执行文件( /bin )、头文件( /include )和库文件( /lib64 )完成所需的编译过程。

Pytorch 使用特定的 cuda 版本

  从 Pytorch 确定使用的 cuda 版本的流程来看,想要指定 Pytorch 使用的 cuda 版本,主要有两种方法,第一种是修改软链接 /usr/local/cuda 所指向的 cuda 安装目录( 若不存在则新建 ),第二种是通过设置环境变量 CUDA_HOME 指向所需使用的 cuda 版本的安装目录。除此之外,还建议将对应 cuda 目录中的可执行文件目录( 形如/home/test/cuda-10.1/bin )加入环境变量 PATH 中。

  对于第一种方法,由于 /usr/ 和 /usr/local/ 目录下的文件均为 root 用户所管理,故而普通用户无法对其进行修改。对于具备了 root 权限的用户而言,在安装有多版本 cuda 的 Linux 系统上,只需切换 /usr/local/cuda 所指向的 cuda 目录,让其指向所需的 cuda 版本的安装位置,即可让 Pytorch 在运行时使用指定版本的 cuda 运行程序。修改软链接的方法如下命令所示,命令删除原有的软链接,并新建指向新路径的软链接。

  sudo rm -rf /usr/local/cuda           //删除软链接,注意是 /usr/local/cuda 而不是 /usr/local/cuda/,前者仅删除软链接,而后者会删除软链接所指向的目录的所有内容,操作请小心sudo ln -s cuda_path /usr/local/cuda    //创建名为 /usr/local/cuda 的软链接,其指向 cuda_path 所指定的 cuda 安装目录

  或者直接强制修改原始的软链接

    sudo ln -sf cuda_path /usr/local/cuda    //修改或创建软链接 /usr/local/cuda 使其指向指定版本的 cuda 目录

  对于非 root 用户而言,主要通过第二种方法进行设置。若想要指定 Pytorch 使用的 cuda 版本,则首先需要设置 CUDA_HOME 环境变量,之后在 PATH 中加入指定 cuda 版本的可执行目录,也就时 cuda_path/bin/ 目录。完成设置后,运行 Pytorch 时所使用的即为对应的 cuda 版本。

  实例

  以笔者的服务器账户为例,笔者在 /home/test/cuda-10.1 目录中安装了 cuda-10.1 ,而服务器上的 /usr/local/cuda 目录指向的是之前安装的老版本的 cuda-8.0,直接运行 Pytorch 时,其会基于上面的确认流程直接使用老版本的 cuda .若想要临时设置 Pytorch 使用新安装的 cuda ,则可以通过 export 命令修改全局变量。这种设置方式在当前终端退出后即失效。

    export CUDA_HOME=/home/test/cuda-10.1/           //设置全局变量 CUDA_HOMEexport PATH=$PATH:/home/test/cuda-10.1/bin/        //在 PATH 变量中加入需要使用的 cuda 版本的路径,使得系统可以使用 cuda 提供的可执行文件,包括 nvcc

  想要永久设置上述 cuda 设置,用户可以直接在自己的 bash 设置文件 ~/.bashrc 文件尾部加入上述命令,保存后再通过 source ~/.bashrc 执行文件,即可完成当前终端的环境变量修改。如果需要使用新的 cuda 来编译文件,还可以通过 LD_LIBRARY_PATH 变量指定进行链接的 cuda 库文件的路径。

  

  位于 ~/.bashrc 文件中的指令在每次终端启动时均会自动运行,后续本用户所打开的终端中的环境变量均会首先执行上述文件中的命令,从而获得对应的 cuda 变量。

其他

  获取 Pytorch 使用的 cuda 版本

  目前,网络上比较多的资源会讨论如何获得 Pytorch 使用的 cuda 的版本的方法。比较主流的一种方法是使用 Pytorch 提供的方法 torch.version.cuda .

    >>>import torch>>>torch.version.cuda    #输出一个 cuda 版本

  如笔者环境下上述命令的输出如下图所示。

  

  事实上,上述输出的 cuda 的版本并不一定是 Pytorch 在实际系统上运行时使用的 cuda 版本,而是编译该 Pytorch release 版本时使用的 cuda 版本

  torch.version.cuda 是位于 torch/version.py 中的一个变量, Pytorch 在基于源码进行编译时,通过 tools/setup_helpers/cuda.py 来确定编译 Pytorch 所使用的 cuda 的安装目录和版本号,确定的具体流程与 Pytorch 运行时确定运行时所使用的 cuda 版本的流程较为相似,具体可以见其源码( Pytorch 1.1.0, Line 66 ).在进行 Pytorch 源码编译时,根目录下的 setup.py 会调用上述代码,确定编译 Pytorch 所使用的 cuda 目录和版本号,并使用获得的信息修改 torch/version.py 中的 cuda 信息( Pytorch, Line 286 )。上述 torch.version.cuda 输出的信息即为编译该发行版 Pytorch 时所使用的 cuda 信息。若系统上的 Pytorch 通过 conda 安装,用户也可以直接通过 conda list | grep pytorch 命令查看安装的 Pytorch 的部分信息。   

    conda list | grep pytorch    //查看安装的 Pytorch 的信息

  笔者环境下上述命令的结果如图所示,可以看到显示的 cuda 信息与 torch.version.cuda 保持一致。

  

  想要查看 Pytorch 实际使用的运行时的 cuda 目录,可以直接输出之前介绍的 cpp_extension.py 中的 CUDA_HOME 变量。

    >>> import torch>>> import torch.utils>>> import torch.utils.cpp_extension>>> torch.utils.cpp_extension.CUDA_HOME        #输出 Pytorch 运行时使用的 cuda 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/267510.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Altman作了多少恶?排挤首席科学家出GPT5开发、离间董事会、PUA员工

在山姆奥特曼(Sam Altman)被OpenAI董事会突然解职后的几天里,这个消息在科技圈引发轰动,该公司内部员工和许多科技界人士甚至将此举比作一场政变。 奥特曼被解雇后立即传出的说法是,OpenAI的广大员工都很喜欢他&#x…

mmyolo框架中计算各类别的AP@0.5指标

本文所用的mmyolo版本:0.3.0 背景: 首先要知道,mmyolo中在eval和test阶段进行指标计算的时候,对于COCO数据集默认用的就是mAP0.5:0.95,即不同IoU阈值下的mAP计算,并且没有给出各类别的具体指标,如 可以看…

c语言->自定义类型联合体和枚举类型

系列文章目录 文章目录 前言 ✅作者简介:大家好,我是橘橙黄又青,一个想要与大家共同进步的男人😉😉 🍎个人主页:橘橙黄又青_C语言,函数,指针-CSDN博客 目的:学习联合体和枚举类型的…

Xinlinx Vivadao入门学习

#1, 引脚定义 1.1 Bank定义 1.2, 当两个banks的I/O口作为LVDS电平时,HR banks的I/O电压VCCO只能为2.5V,HP banks的I/O口电压为1.8V。两个banks支持LVDS的标准不同,HR I/O banks的I/O只能分配LVDS_25标准,…

运筹学经典问题(二):最短路问题

问题描述 给定一个图(有向图或无向图) G ( V , E ) G (V, E) G(V,E), V V V是图中点的集合, E E E是图中边的集合,图中每条边 ( i , j ) ∈ E (i, j) \in E (i,j)∈E都对应一个权重 c i j c_{ij} cij​(…

农副产品行业ERP有哪些?农副产品行业ERP是做什么的

现实生活当中有很多种类的农副产品,这些琳琅满目的商品有多元化的营销渠道和策略,同时在保质期、包装、价格策略、配料、生产工艺等诸多方面存在明显的差异。 由于行业的特殊性,传统的人工统计分析工作量较大,同时也难以确保业务…

使用Python实现阿里系某购物网站Sign参数加密

文章目录 1. 写在前面2. 抓包分析3. 断点分析4. 爬虫实现 【作者主页】:吴秋霖 【作者介绍】:Python领域优质创作者、阿里云博客专家、华为云享专家。长期致力于Python与爬虫领域研究与开发工作! 【作者推荐】:对JS逆向感兴趣的朋…

2017下半年软工(桥接模式)

题目——桥接模式(抽象调用实现部分) package org.example.桥接模式;/*** 桥接模式的核心思想是将抽象部分与它的实现部分分离,使它们可以独立变化,就是说你在实现部分:WinImp、LinuxImp基础上还能加上RedHatImp&#…

12 位多通道国产芯片ACM32F403/F433 系列,支持 MPU 存储保护功能,应用于工业控制,智能家居等产品中

ACM32F403/F433 芯片的内核基于 ARMv8-M 架构,支持 Cortex-M33 和 Cortex-M4F 指令集。芯片内核 支持一整套DSP指令用于数字信号处理,支持单精度FPU处理浮点数据,同时还支持Memory Protection Unit (MPU)用于提升应用的…

Science Robotics 挖掘机升级智能机器人,充分使用当地材料自主搭建石墙和土墙

建筑业对人类生产力至关重要,但需要实质性创新来满足不断增长的需求并减少其对环境的严重影响。建筑业是世界上最大的经济部门之一,占全球国内生产总值的13%。推而广之,它几乎是所有其他行业的重要组成部分:建筑业负责运输和农业基…

OpenHarmony创新赛人气投票活动,最佳人气作品由你来定!

12月1日至12月15日 十大入围作品线上投票激战正酣 最佳人气作品,由你来定! 投票链接:OpenHarmony创新赛人气作品投票正式开启——最佳人气作品,由你来定! - 文章 OpenHarmony开发者论坛

有趣的数学 数学建模入门三 数学建模入门示例两例 利用微积分求解

一、入门示例1 1、问题描述 某宾馆有150间客房,经过一段时间的经营,该宾馆经理得到一些数据:如果每间客房定价为200元,入住率为55%;定价为180元,入住率为65%;定价为160元…