【十三】Python中assert的作用?
Python中assert(断言)用于判断一个表达式,在表达式条件为 f a l s e false false的时候触发异常。
断言可以在条件不满足程序运行的情况下直接返回错误,而不必等待程序运行后出现崩溃的情况。
Rocky直接举一些例子:
>>> assert True
>>> assert False
Traceback (most recent call last):File "<stdin>", line 1, in <module>
AssertionError
>>> assert 1 == 1
>>> assert 1 == 2
Traceback (most recent call last):File "<stdin>", line 1, in <module>
AssertionError
>>> assert 1 != 2
【十四】Python中互换变量有不用创建临时变量的方法吗?
在Python中,当我们想要互换两个变量的值或将列表中的两个值交换时,我们可以使用如下的格式进行,不需要创建临时变量:
x, y = y, x
这么做的原理是什么呢?
首先一般情况下Python是从左到右解析一个语句的,但在赋值操作的时候,因为是右值具有更高的计算优先级,所以需要从右向左解析。
对于上面的代码,它的执行顺序如下:
先计算右值 y , x y , x y,x(这里是简单的原值,但可能会有表达式或者函数调用的计算过程), 在内存中创建元组(tuple),存储 y , x y, x y,x分别对应的值;计算左边的标识符,元组被分别分配给左值,通过解包(unpacking),元组中第一个标示符对应的值 ( y ) (y) (y),分配给左边第一个标示符 ( x ) (x) (x),元组中第二个标示符对应的值 ( x ) (x) (x),分配给左边第二个标示符 ( y ) (y) (y),完成了 x x x和 y y y的值交换。
【十五】Python中的主要数据结构都有哪些?
- 列表(list)
- 元组(tuple)
- 字典(dict)
- 集合(set)
【十六】Python中的可变对象和不可变对象?
可变对象与不可变对象的区别在于对象本身是否可变。
可变对象:list(列表) dict(字典) set(集合)
不可变对象:tuple(元组) string(字符串) int(整型) float(浮点型) bool(布尔型)
【十七】Python中的None代表什么?
None是一个特殊的常量,表示空值,其和False,0以及空字符串不同,它是一个特殊Python对象, None的类型是NoneType。
None和任何其他的数据类型比较返回False。
>>> None == 0
False
>>> None == ' '
False
>>> None == None
True
>>> None == False
False
我们可以将None复制给任何变量,也可以给None赋值。
【十八】Python中 ∗ a r g s *args ∗args和 ∗ ∗ k w a r g s **kwargs ∗∗kwargs的区别?
∗ a r g s *args ∗args和 ∗ ∗ k w a r g s **kwargs ∗∗kwargs主要用于函数定义。我们可以将不定数量的参数传递给一个函数。
这里的不定的意思是:预先并不知道函数使用者会传递多少个参数, 所以在这个场景下使用这两个关键字。
∗ a r g s *args ∗args
∗ a r g s *args ∗args是用来发送一个非键值对的可变数量的参数列表给一个函数。
我们直接看一个例子:
def test_var_args(f_arg, *argv):print("first normal arg:", f_arg)for arg in argv:print("another arg through *argv:", arg)test_var_args('hello', 'python', 'ddd', 'test')-----------------结果如下-----------------------
first normal arg: hello
another arg through *argv: python
another arg through *argv: ddd
another arg through *argv: test
∗ ∗ k w a r g s **kwargs ∗∗kwargs
∗ ∗ k w a r g s **kwargs ∗∗kwargs允许我们将不定长度的键值对, 作为参数传递给一个函数。如果我们想要在一个函数里处理带名字的参数, 我们可以使用 ∗ ∗ k w a r g s **kwargs ∗∗kwargs。
我们同样举一个例子:
def greet_me(**kwargs):for key, value in kwargs.items():print("{0} == {1}".format(key, value))greet_me(name="yasoob")-----------结果如下-------------
name == yasoob
【十九】Python中Numpy的broadcasting机制?
Python的Numpy库是一个非常实用的数学计算库,其broadcasting机制给我们的矩阵运算带来了极大地方便。
我们先看下面的一个例子:
>>> import numpy as np
>>> a = np.array([1,2,3])
>>> a
array([1, 2, 3])
>>> b = np.array([6,6,6])
>>> b
array([6, 6, 6])
>>> c = a + b
>>> c
array([7, 8, 9])
上面的代码其实就是把数组 a a a和数组 b b b中同样位置的每对元素相加。这里 a a a和 b b b是相同长度的数组。
如果两个数组的长度不一致,这时候broadcasting就可以发挥作用了。
比如下面的代码:
>>> d = a + 5
>>> d
array([6, 7, 8])
broadcasting会把 5 5 5扩展成 [ 5 , 5 , 5 ] [5,5,5] [5,5,5],然后上面的代码就变成了对两个同样长度的数组相加。示意图如下(broadcasting不会分配额外的内存来存取被复制的数据,这里只是方面描述):
我们接下来看看多维数组的情况:
>>> e
array([[1., 1., 1.],[1., 1., 1.],[1., 1., 1.]])
>>> e + a
array([[2., 3., 4.],[2., 3., 4.],[2., 3., 4.]])
在这里一维数组被扩展成了二维数组,和 e e e的尺寸相同。示意图如下所示:
我们再来看一个需要对两个数组都做broadcasting的例子:
>>> b = np.arange(3).reshape((3,1))
>>> b
array([[0],[1],[2]])
>>> b + a
array([[1, 2, 3],[2, 3, 4],[3, 4, 5]])
在这里 a a a和 b b b都被扩展成相同的尺寸的二维数组。示意图如下所示:
总结broadcasting的一些规则:
- 如果两个数组维数不相等,维数较低的数组的shape进行填充,直到和高维数组的维数匹配。
- 如果两个数组维数相同,但某些维度的长度不同,那么长度为1的维度会被扩展,和另一数组的同维度的长度匹配。
- 如果两个数组维数相同,但有任一维度的长度不同且不为1,则报错。
>>> a = np.arange(3)
>>> a
array([0, 1, 2])
>>> b = np.ones((2,3))
>>> b
array([[1., 1., 1.],[1., 1., 1.]])
>>> a.shape
(3,)
>>> a + b
array([[1., 2., 3.],[1., 2., 3.]])
接下来我们看看报错的例子:
>>> a = np.arange(3)
>>> a
array([0, 1, 2])
>>> b = np.ones((3,2))
>>> b
array([[1., 1.],[1., 1.],[1., 1.]])
>>> a + b
Traceback (most recent call last):File "<stdin>", line 1, in <module>
ValueError: operands could not be broadcast together with shapes (3,) (3,2)
【二十】Python中的实例方法、静态方法和类方法三者区别?
不用@classmethod和@staticmethod修饰的方法为实例方法。在类中定义的方法默认都是实例方法。实例方法最大的特点是它至少要包含一个self参数,用于绑定调用此方法的实例对象,实例方法通常可以用类对象直接调用。
采用@classmethod修饰的方法为类方法。类方法和实例方法相似,它至少也要包含一个参数,只不过类方法中通常将其命名为cls,Python会自动将类本身绑定给cls参数。我们在调用类方法时,无需显式为cls参数传参。
采用@staticmethod修饰的方法为静态方法。静态方法没有类似self、cls这样的特殊参数,因此Python的解释器不会对它包含的参数做任何类或对象的绑定。也正因为如此,类的静态方法中无法调用任何类属性和类方法。
【二十一】Python中常见的切片操作
[:n]代表列表中的第一项到第n项。我们看一个例子:
example = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]print(example[:6])---------结果---------
[1, 2, 3, 4, 5, 6]
[n:]代表列表中第n+1项到最后一项:
example = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]print(example[6:])---------结果---------
[7, 8, 9, 10]
[-1]代表取列表的最后一个元素:
example = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]print(example[-1])---------结果---------
10
[:-1]代表取除了最后一个元素的所有元素:
example = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]print(example[:-1])---------结果---------
[1, 2, 3, 4, 5, 6, 7, 8, 9]
[::-1]代表取整个列表的相反列表:
example = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]print(example[::-1])---------结果---------
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
[1:]代表从第二个元素意指读取到最后一个元素:
example = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]print(example[1:])---------结果---------
[2, 3, 4, 5, 6, 7, 8, 9, 10]
[4::-1]代表取下标为4(即第五个元素)的元素和之前的元素反转读取:
example = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]print(example[4::-1])---------结果---------
[5, 4, 3, 2, 1]
【二十二】Python中如何进行异常处理?
一般情况下,在Python无法正常处理程序时就会发生一个异常。异常在Python中是一个对象,表示一个错误。当Python脚本发生异常时我们需要捕获处理它,否则程序会终止执行。
捕捉异常可以使用try,except和finally语句。
try和except语句用来检测try语句块中的错误,从而让except语句捕获异常信息并处理。
try:6688 / 0
except:'''异常的父类,可以捕获所有的异常'''print "0不能被除"
else:'''保护不抛出异常的代码'''print "没有异常"
finally:print "最后总是要执行我"
【二十三】Python中remove,del以及pop之间的区别?
remove,del以及pop都可以用于删除列表、字符串等里面的元素,但是具体用法并不相同。
- remove是剔除第一个匹配的值。
- del是通过索引来删除当中的元素。
- pop是通过索引来删除当中的元素,并且返回该元素;若括号内不添加索引值,则默认删除最后一个元素。
>>> a = [0, 1, 2, 1, 3]
>>> a.remove(1)
>>> a
[0, 2, 1, 3] >>> a = [0, 1, 2, 1, 3]
>>> del a[1]
[0, 2, 1, 3] >>> a = [0, 1, 2, 1, 3]
>>> a.pop(1)
1
>>> a
[0, 2, 1, 3]
文末推荐
内容介绍:
《机器学习平台架构实战》详细阐述了与机器学习平台架构相关的基本解决方案,主要包括机器学习和机器学习解决方案架构,机器学习的业务用例,机器学习算法,机器学习的数据管理,开源机器学习库,Kubernetes容器编排基础设施管理,开源机器学习平台,使用AWS机器学习服务构建数据科学环境,使用AWS机器学习服务构建企业机器学习架构,高级机器学习工程,机器学习治理、偏差、可解释性和隐私,使用人工智能服务和机器学习平台构建机器学习解决方案等内容。此外,本书还提供了相应的示例、代码,以帮助读者进一步理解相关方案的实现过程。
当当: https://product.dangdang.com/29625469.html
京东: https://item.jd.com/13855627.html