智能优化算法应用:基于猫群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于猫群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于猫群算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.猫群算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用猫群算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.猫群算法

猫群算法原理请参考:https://blog.csdn.net/u011835903/article/details/108339671
猫群算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

猫群算法参数如下:

%% 设定猫群优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明猫群算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/268145.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解密:为何YouTube 5秒广告‘秒’过,国内视频平台坚持15秒?

大家好,我是小米!今天我们来聊一个热门的话题:为什么YouTube可以在5秒后跳过广告,而国内视频平台却坚持15秒呢?这可不是简单的数字差异,而是一个关乎用户体验、商业模式以及产品策略的大问题。作为一个热衷…

【Python必做100题】之第十一题(组合数字)

题目:有四个数字:1,2,3,4,能组成多少个互不相同且无重复数字的三位数?各是多少? 思路:可利用循环组合数字 代码如下: # 有四个数字:1,2,3,4,能组成多少个互不相同且无…

从视频中提取图片,轻松制作专属视频封面

你是否曾经为如何制作一个吸引人的视频封面而烦恼?现在,我们将向你展示如何从视频中提取图片,并轻松制作专属的视频封面。无论你是视频编辑新手,还是经验丰富的专业人士,这个技巧都能够帮助你快速提升你的视频品质。 …

【大模型】800万纯AI战士年末大集结,硬核干货与音乐美食12月28日准时开炫

文章目录 WAVE SUMMIT五载十届,AI开发者热血正当时酷炫前沿、星河共聚!大模型技术生态发展正当时 回望2023年,大语言模型或许将是科技史上最浓墨重彩的一笔。从技术、产业到生态,大语言模型在突飞猛进中加速重构万物。随着理解、生…

vrep学习笔记8——将vrep中graph文件导出为csv.文件,并导入matlab中绘制曲线图

在机械臂仿真过程中,使用vrep中的graph图表功能绘制出的曲线不够清晰,如何将graph中的图表数据导出为csv文件,并使用matlab绘制出同样的曲线图呢? 1.将vrep中的graph导出为csv文件 首先选中graph如下 选择file-export-selected g…

TikTok美国本土店的入驻条件是什么?一文带你玩转TikTok美国本土店

现在tiktok美国本土店很火,很多卖家都很看好美国这个市场,纷纷入局tiktok美国本土店,现在美国tiktok本土店已经开放自注册了,但是可能还有很多新手卖家不知道入驻的要求有什么,今天东哥就给大家揭秘做tiktok美国本土店…

Rust语言GUI库之gtk安装

文章目录 工具链安装管理软件vcpkgvcpkg介绍安装vcpkg 安装gtk遇到的问题 工具链安装管理软件vcpkg vcpkg介绍 在使用C/C编写项目时, 引用第三方库是很麻烦的事, 需要手动下载源码然后编译最后再添加到项目里,配置头文件、lib、dll,如果是一个简单点的…

排坑指南之STM32串口接收队列定时异常导致接收失败

背景: 公司的项目,今天讲的这部分功能主要是和IC卡读取板进行串口通讯,然后将读取回来的IC卡保存在本地。我在调试的过程中发现了一个问题,上电刚开始的阶段,程序是好用的,能读取回来IC卡卡号,然后运行一段时间之后,就读取不回来卡号了,刷卡没有响应。 摘要: 讲述STM…

结构体内存对齐

为什么有内存对齐 1. 平台原因(移植原因): 不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则会抱出硬件异常。 因为:(基于这个原因,就要把某些数…

STM32-GPIO编程

一、GPIO 1.1 基本概念 GPIO(General-purpose input/output)通用输入输出接口 --GP 通用 --I input输入 --o output输出 通用输入输出接口GPIO是嵌入式系统、单片机开发过程中最常用的接口,用户可以通过编程灵活的对接口进行控制,…

【数据结构】平衡树引入

数据结构-平衡树 前置知识 二叉树二叉树的中序遍历 问题 维护一个数据结构,支持插入元素、删除元素、查询元素的排名、查询排名对应的元素、查询元素的前驱、查询元素的后继等。 BST(二叉搜索树) 作为一个基本无效(很容易卡掉…

【Linux】线程的概念理解,从感知理解到全面深入

1.初始线程概念 在伟大的”计算机哲学“操作系统这本书中,一般给出线程的概念为:是在进程内部运行的一个执行分支(执行流),属于进程的一部分,粒度要比进程更加细腻和轻量化。大家对这一概念一看而过既可以…