深度学习第5天:GAN生成对抗网络

Image Description

☁️主页 Nowl

🔥专栏 《深度学习》

📑君子坐而论道,少年起而行之

​​

在这里插入图片描述

文章目录

  • 一、GAN
    • 1.基本思想
    • 2.用途
    • 3.模型架构
  • 二、具体任务与代码
    • 1.任务介绍
    • 2.导入库函数
    • 3.生成器与判别器
    • 4.预处理
    • 5.模型训练
    • 6.图片生成
    • 7.不同训练轮次的结果对比

一、GAN

1.基本思想

想象一下,市面上有许多仿制的画作,人们为了辨别这些伪造的画,就会提高自己的鉴别技能,然后仿制者为了躲过鉴别又会提高自己的伪造技能,这样反反复复,两个群体的技能不断得到提高,这就是GAN的基本思想

2.用途

我们知道GAN的全名是生成对抗网络,那么它就是以生成为主要任务,所以可以用在这些方面

  • 生成虚拟数据集,当数据集数量不够时,我们可以用这种方法生成数据
  • 图像清晰化,可以将模糊图片清晰化
  • 文本到图像的生成,可以训练文生图模型

GAN的用途还有很多,可以在学习过程中慢慢发现

3.模型架构

GAN的主要结构包含一个生成器和一个判别器,我们先输入一堆杂乱数据(被称为噪声)给生成器,接着让判别器将生成器生成的数据与真实的数据作对比,看是否能判别出来,以此往复训练

在这里插入图片描述

二、具体任务与代码

1.任务介绍

相信很多人都对手写数字数据集不陌生了,那我们就训练一个生成手写数字的GAN,注意:本示例代码需要的运行时间较长,请在高配置设备上运行或者减少训练回合数

在这里插入图片描述

2.导入库函数

先导入必要的库函数,包括torch用来处理神经网络方面的任务,numpy用来处理数据

import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd.variable import Variable
from torchvision import transforms, datasets
import numpy as np

3.生成器与判别器

使用torch定义生成器与判别器的基本结构,这里由于任务比较简单,只用定义线性层就行,再给线性层添加相应的激活函数就行了

# 定义生成器(Generator)和判别器(Discriminator)的简单网络结构
class Generator(nn.Module):def __init__(self):super(Generator, self).__init__()self.model = nn.Sequential(nn.Linear(100, 256),nn.ReLU(),nn.Linear(256, 784),nn.Tanh())def forward(self, noise):return self.model(noise)class Discriminator(nn.Module):def __init__(self):super(Discriminator, self).__init__()self.model = nn.Sequential(nn.Linear(784, 256),nn.LeakyReLU(0.2),nn.Linear(256, 1),nn.Sigmoid())def forward(self, image):return self.model(image)

4.预处理

这一部分定义了模型参数,加载了数据集,定义了损失函数与优化器,这些是神经网络训练时的一些基本参数

# 定义一些参数
batch_size = 100
learning_rate = 0.0002
epochs = 500# 加载MNIST数据集
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))
])mnist_data = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
data_loader = torch.utils.data.DataLoader(dataset=mnist_data, batch_size=batch_size, shuffle=True)# 初始化生成器、判别器和优化器
generator = Generator()
discriminator = Discriminator()
optimizer_G = optim.Adam(generator.parameters(), lr=learning_rate)
optimizer_D = optim.Adam(discriminator.parameters(), lr=learning_rate)# 损失函数
criterion = nn.BCELoss()

5.模型训练

这一部分开始训练模型,通过反向传播逐步调整模型的参数,注意模型训练的过程,观察生成器和判别器分别是怎么在训练中互相作用不断提高的

# 训练 GAN
for epoch in range(epochs):for data, _ in data_loader:data = data.view(data.size(0), -1)real_data = Variable(data)target_real = Variable(torch.ones(data.size(0), 1))target_fake = Variable(torch.zeros(data.size(0), 1))# 训练判别器optimizer_D.zero_grad()output_real = discriminator(real_data)loss_real = criterion(output_real, target_real)loss_real.backward()noise = Variable(torch.randn(data.size(0), 100))fake_data = generator(noise)output_fake = discriminator(fake_data.detach())loss_fake = criterion(output_fake, target_fake)loss_fake.backward()optimizer_D.step()# 训练生成器optimizer_G.zero_grad()output = discriminator(fake_data)loss_G = criterion(output, target_real)loss_G.backward()optimizer_G.step()print(f'Epoch [{epoch+1}/{epochs}], Loss D: {loss_real.item()+loss_fake.item()}, Loss G: {loss_G.item()}')

6.图片生成

这一部分再一次随机生成了一些噪声,并把他们传入生成器生成图片,其中包含一些格式转化过程,再通过matplotlib绘图库显示结果

# 生成一些图片
num_samples = 16
noise = Variable(torch.randn(num_samples, 100))
generated_samples = generator(noise)
generated_samples = generated_samples.view(num_samples, 1, 28, 28).detach()import matplotlib.pyplot as plt
import torchvision.utils as vutilsplt.figure(figsize=(8, 8))
plt.axis("off")
plt.title("Generated Images")
plt.imshow(np.transpose(vutils.make_grid(generated_samples, nrow=4, padding=2, normalize=True).cpu(), (1, 2, 0))
)
plt.show()

7.不同训练轮次的结果对比

在这里插入图片描述

在这里插入图片描述

感谢阅读,觉得有用的话就订阅下《深度学习》专栏吧,有错误也欢迎指出

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/276464.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

匿名内部类与Lambda表达式

深入了解Java的匿名内部类 Java作为一种面向对象的编程语言,提供了许多灵活的特性,其中之一就是匿名内部类。匿名内部类是一种没有名字的局部内部类,通常用于创建只需在一个地方使用的类的实例。 什么是匿名内部类? 匿名内部类是…

cmake 最基础示例

C 代码 文件名&#xff1a;first_cmake.cpp #include <iostream> using namespace std;int main() {cout<< "A" << endl;return 0; }CMakeLists.txt 文件 #CMakeLists.txt # 设置:版本 cmake_minimum_required(VERSION 3.20)# 定义 :项目名称 …

跑代码中遇到的错误合集(持续更新)

1.TypeError: dropout(): argument ‘input‘ (position 1) must be Tensor, not str 原因&#xff1a;dropout函数接收到的参数是一个字典类型(需手动设置其不要返回字典类型) 解决步骤: 1.根据代码定位到dropout函数 2.定位到函数中的参数 3.对给dropout函数参数赋值的函数的…

“文思助手”苏哒智能加入飞桨技术伙伴计划,共同打造“大模型+企业办公”新模式

近日&#xff0c;厦门苏哒智能科技有限公司正式加入飞桨技术伙伴计划&#xff0c;双方将发挥各自的专业优势&#xff0c;共同致力于在智能办公和创作领域实现技术突破和业务创新&#xff0c;帮助企业、知识工作者大幅提高生产力。 厦门苏哒智能科技有限公司 厦门苏哒智能科技有…

记录 | docker报错could not select device driver ““ with capabilities: [[gpu]].

ubuntu18.04 上启动 docker start 报错&#xff1a; could not select device driver “” with capabilities: [[gpu]]. docker: Error response from daemon: could not select device driver “” with capabilities: [[gpu]]. ERRO[0005] error waiting for container: con…

初探栈溢出(上)

0x01 HEVD介绍 HEVD全称为HackSys Ex treme Vulnerable Drive&#xff0c;是一个项目&#xff0c;故意设计包含多种漏洞的驱动程序&#xff0c;旨在帮助安全爱好者来提升他们在内核层面的漏洞利用能力。 说白了&#xff0c;是一个内核漏洞的靶场。 项目地址&#xff1a;htt…

分析若依的文件上传处理逻辑

分析若依的文件上传处理逻辑 注&#xff1a;已经从若依框架完成拆分&#xff0c;此处单独分析一下人家精彩的封装&#xff0c;也来理解一下怎么做一个通用的上传接口&#xff01;如有分析的&#xff0c;理解的不透彻的地方&#xff0c;大家多多包含&#xff0c;欢迎批评指正&am…

Linux,Windows或macOS系统的电脑怎样才能投屏到手机?

很多人都知道手机投屏到电脑的方法&#xff0c;但想要反过来的时候&#xff0c;却束手无策。 如果你想要将电脑投屏到手机&#xff0c;无论你的电脑是Windows&#xff0c;Linux还是macOS系统&#xff0c;无论你的手机是安卓、iOS还是鸿蒙&#xff0c;都可以用下面这个方法实现电…

01.前言

前言 1.什么是前端开发 前端开发是创建 Web 页面或 app 等前端界面呈现给用户的过程核心技术&#xff1a;HTML&#xff0c;CSS&#xff0c;JavaScript 以及衍生出的各种技术&#xff0c;框架等 2.前端开发应用场景 3.前端职业路线 4.什么是CS架构与BS架构 介绍 应用软件&a…

什么是主动学习(Active Learning)?定义,原理,以及主要方法

数据是训练任何机器学习模型的关键。但是&#xff0c;对于研究人工智能的企业和团队而言&#xff0c;数据仍是实现成功的最大障碍之一。首先&#xff0c;您需要大量数据来创建高性能模型。更重要的是&#xff0c;您需要标注准确的数据。虽然许多团队一开始都是手动标注数据集&a…

SpringCloud系列(七)| 集成Nacos配置中心

1、关于配置中心 在说配置中心之前&#xff0c;我们先说说配置文件&#xff0c;关于这个词&#xff0c;我想大家并不陌生。 不管是前端&#xff0c;后端或是其他的各类技术栈&#xff0c;应该都离不来配置文件。我们在早期的代码开发时代&#xff0c;就经常和配置文件打交道&a…

数据结构和算法-图的基本概念及邻接矩阵法和邻接表法和十字链表法和链表链表法

文章目录 图的概念总览图的定义图逻辑结构的应用无向图和有向图简单图和多重图顶点的度&#xff0c;入读&#xff0c;出度顶点-顶点的关系描述连通图&#xff0c;强连通图研究图的局部-子图无向图有向图 连通分量强连通分量生成树生成森林边的权&#xff0c;带权图/网几种特殊形…