基于BWA,Bowtie2,samtools、checkm等工具计算宏基因组学序列分析中Contigs与Genes在样品中的丰度,多种计算方式和脚本对比

计算contigs和genes相对丰度可以提供有关微生物群落结构和功能的信息。以下是计算这两个指标的意义:

1. Contigs的相对丰度:contigs是利用基因组测序技术获得的碎片序列,通过计算contigs的相对丰度可以了解微生物群落中不同菌种的相对丰度。这可以帮助研究者理解微生物群落的物种组成和群落结构。

2. Genes的相对丰度:基因是生物体内功能的基本单位,通过计算基因的相对丰度可以了解不同菌群的功能特征。这可以帮助研究者了解微生物群落的代谢能力、生物合成能力和环境适应性等。

通过同时计算contigs和genes的相对丰度,可以提供全面的微生物群落信息。这些信息对于研究者了解微生物群落的组成和功能、揭示微生物与宿主相互作用等方面具有重要的意义。

第一种方式 基于Bowtie2、samtools、checkm

计算contigs的丰度一般使用assembly的结果,计算基因风度时一般用prodigal的结果,prodigal结果中建议同时输出蛋白序列和核酸序列文件,基因注释是一般使用diamond需要使用蛋白序列,而这里计算丰度需要与原始核酸序列进行比对,所以这里要用核酸序列,prodigal输出的核酸序列和蛋白序列id一样,所以只需要最后以序列id进行mapping就可以了。

首先根据拼接的contigs构建新的Index,如下所示:

bowtie2-build --threads 20 sample1/final_assembly.fasta sample1.contig# 或 prodigal结果
bowtie2-build --threads 20 sample1.nucle_seq.fa sample1.gene

接下来将宏基因组测序的全部reads映射到拼接得到的Contigs上,每个reads至多只能分配到一条Contigs上:

#注意前面步骤的输出文件名,与这里的-x参数对应
# 如果是使用assembly的
bowtie2 -p 20 \-x sample1.contig \-1 sample1_clean_reads_1.fq \-2 sample1_clean_reads_2.fq \-S sample1.contig.sam \--fast# 或 prodigal结果
bowtie2 -p 20 \-x sample1.gene \-1 sample1_clean_reads_1.fq \-2 sample1_clean_reads_2.fq \-S sample1.gene.sam \--fast

以下为第二种方式共用

使用samtools工具将sam文件转化为bam文件:

samtools view -bS --threads 20 sample1.contig.sam > sample1.contig.bam# prodigal
samtools view -bS --threads 20 sample1.gene.sam > sample1.gene.bam

对bam文件按照比对的位置坐标对reads进行排序:

samtools sort sample1.contig.bam -o sample1.contig.reads.sorted.bam --threads 20# prodigal结果
samtools sort sample1.gene.bam -o sample1.gene.reads.sorted.bam --threads 20

此bam文件中便储存了reads的mapping结果,接下来一般是自己写脚本来解析。这里我们也可以借助CheckM来实现。要计算coverage首先需要准备bam的index文件,如下所示:

samtools index sample1.contig.reads.sorted.bam#prodigal 结果
samtools index sample1.gene.reads.sorted.bam

运行结束后生成会生成伴随的index文件contig.reads.sorted.bam.bai,其与对应的sorted bam放在同一路径。CheckM是一个宏基因组bins评估工具,这时候我们可以把所有的contigs序列文件当作一个“bin”放到bins文件夹中。接下来使用CheckM计算coverage:

#每个样品一个文件夹,作为一个bin
mkdir sample1
cp sample1.contig.fasta sample1
checkm coverage \-x fasta \-m 20 \-t 20 \sample1 \sample1.contigs_coverage.out \sample1.contig.reads.sorted.bam### prodigal
cp sample1.nucle_seq.fa sample1
checkm coverage \-x fasta \-m 20 \-t 20 \sample1 \sample1.gene_coverage.out \sample1.gene.reads.sorted.bam

结果包含contig序列ID、所在的bin的ID、coverage等信息,如下所示,用excel对齐了看吧:

  • Sequence Id: 序列的唯一标识符。
  • Bin Id: 该序列所属的Bin(即被分组到哪个类别)。在宏基因组学中,Bin通常指的是组装后相似特征或物种的组集合。
  • Sequence length (bp): 序列的长度,以碱基对(bp)计算。
  • Bam Id: 对应该序列的测序数据文件。
  • Coverage: 覆盖度,指的是这个contig在样品中出现的平均次数。它通常由测序reads的比对情况得出。
  • Mapped reads: 映射的reads数量,指的是能够成功比对到这个contig上的测序reads数量。

相对丰度计算公式:

要计算基因在样品中的相对丰度,您可以使用覆盖度和Mapped reads。通常情况下,丰度可以用覆盖度和测序reads的总数来估算。例如,可以使用以下公式计算相对丰度:

其中:

  • Mapped reads 是该contig的映射reads数量。
  • Average read length 是测序reads的平均长度。
  • Total reads 是所有测序reads的总数。

Total reads统计:

 python脚本:

def count_reads_fastq(fastq_file):with open(fastq_file, 'r') as f:count = sum(1 for line in f) // 4  # 每4行代表一个read,因此除以4得到reads数量return count# 替换为您的FASTQ文件路径
file_path = 'path/to/your/fastq_file.fastq'# 调用函数计算reads数量
reads_count = count_reads_fastq(file_path)
print(f"FASTQ文件中的reads数量为: {reads_count}")

bash脚本:

# 统计FASTQ文件中reads的数量
grep -c "^@" your_fastq_file.fastq

这里需要注意第一列的sequence id,后续需要mapping到基因注释结果中对应的seq id,除此外,我们只需要reads的mapping信息即可。接下来可以根据map的reads数计算相对丰度,也即除以contig长度和总得reads数,类似于RNA-seq中的RPKM标准化方法。假如是多样品混合拼接,只需要将每一个样品的reads数据重复上面操作,最后根据contig id进行整合。

第二种方式:BWA(推荐)、samtools、CheckM

#首先对参考序列构建index:
bwa index -p sample1_gene sample1.nucle_seq.fa
#使用BWA-MEM进行比对:
bwa mem \-t 20 \sample1_gene \sample1_clean_1.fastq \sample1_clean_2.fastq \>sample1_gene.sam

从这里开始与第一种方式samtools步骤开始相同

第三种方式: bedtools计算

# 步骤1:比对测序reads到参考基因组
# 假设使用Bowtie2进行比对
bowtie2-build your_genome.fa your_genome_index  # 如果尚未构建索引
bowtie2 -x your_genome_index -U your_reads.fastq -S aligned.sam# 步骤2:将比对结果转换为BAM格式
samtools view -S -b aligned.sam > aligned.bam# 步骤3:提取覆盖度信息
# 假设使用bedtools进行提取覆盖度信息
bedtools genomecov -ibam aligned.bam -g your_genome.fa.fai > coverage.bed# 步骤4:计算基因长度
# 假设已经有基因长度信息的文件,如genes_lengths.txt# 步骤5:计算相对丰度
awk 'BEGIN {OFS="\t"} NR==FNR {len[$1]=$2; next} {print $1, $2/len[$1]}' genes_coverage.txt genes_lengths.txt > relative_abundance.txt

全流程计算脚本

多样品请自己做for循环操作

自动分析脚本1

用于计算基于 bwa-memsamtoolsCheckM 的Contigs相对丰度。该脚本假设你已经有参考基因组和测序数据,并安装了相应的软件。

#!/bin/bash# 定义文件路径
reference_genome="your_reference_genome.fa"
reads="your_reads.fastq"# 步骤1:用bwa-mem比对测序reads到参考基因组
bwa index $reference_genome  # 如果尚未构建索引
bwa mem -t 4 $reference_genome $reads > aligned.sam# 步骤2:将比对结果转换为BAM格式
samtools view -bS aligned.sam > aligned.bam
samtools sort -o aligned_sorted.bam aligned.bam
samtools index aligned_sorted.bam# 步骤3:使用CheckM估算Contigs的丰度
checkm lineage_wf -f checkm_output.txt -x fa $reference_genome contigs_dir/ checkm_results/# 步骤4:提取覆盖度信息
checkm qa -o 2 -f checkm_coverage.txt checkm_results/lineage.ms contigs_dir/ coverage.txt

自动分析脚本2

基于bowtie2samtoolsbedtools计算Contigs或Genes在样品中相对丰度的流程自动分析脚本。请注意,这个脚本仅供参考,并不能直接运行,因为其中的文件路径、参数和具体数据可能需要根据实际情况进行调整。

#!/bin/bash# 假设有参考基因组文件your_genome.fa,测序reads文件your_reads.fastq和基因注释文件genes_annotation.gff# 步骤1:构建参考基因组索引
bowtie2-build your_genome.fa your_genome_index# 步骤2:将测序reads比对到参考基因组
bowtie2 -x your_genome_index -U your_reads.fastq -S aligned.sam# 步骤3:将比对结果转换为BAM格式
samtools view -S -b aligned.sam > aligned.bam# 步骤4:生成基因覆盖度文件
bedtools genomecov -ibam aligned.bam -g your_genome.fa.fai > coverage.txt# 步骤5:根据基因注释文件提取基因长度信息
awk '{if($3=="gene") print $0}' genes_annotation.gff | cut -f 1,4,5 > genes_lengths.txt# 步骤6:根据覆盖度和基因长度信息计算相对丰度
awk 'BEGIN {OFS="\t"} NR==FNR {len[$1]=$3-$2; next} {print $1, $2/len[$1]}' coverage.txt genes_lengths.txt > relative_abundance.txt# 输出结果
echo "相对丰度计算完成。结果保存在 relative_abundance.txt 文件中。"

自动分析脚本3 

# python
import subprocess
import os# 定义文件路径
ref_genome = 'path/to/your_reference_genome.fasta'
sample_reads = 'path/to/your_sample_reads.fastq'
gene_lengths = 'path/to/your_gene_lengths.txt'# 步骤1:比对测序reads到参考基因组
# 使用Bowtie2进行比对
bowtie_index = 'your_genome_index'
subprocess.run(['bowtie2-build', ref_genome, bowtie_index])
subprocess.run(['bowtie2', '-x', bowtie_index, '-U', sample_reads, '-S', 'aligned.sam'])# 步骤2:将比对结果转换为BAM格式
subprocess.run(['samtools', 'view', '-S', '-b', 'aligned.sam', '-o', 'aligned.bam'])# 步骤3:提取覆盖度信息
subprocess.run(['bedtools', 'genomecov', '-ibam', 'aligned.bam', '-g', ref_genome + '.fai', '>', 'coverage.bed'])# 步骤4:计算基因长度
# 假设已经有基因长度信息的文件# 步骤5:计算相对丰度
with open('genes_coverage.txt', 'r') as cov_file, open(gene_lengths, 'r') as len_file, open('relative_abundance.txt', 'w') as output:for cov_line, len_line in zip(cov_file, len_file):contig_id, coverage = cov_line.strip().split('\t')gene_id, length = len_line.strip().split('\t')rel_abundance = float(coverage) / float(length)output.write(f"{gene_id}\t{rel_abundance}\n")# 清理临时文件(可选)
os.remove('aligned.sam')
os.remove('aligned.bam')
os.remove('coverage.bed')

自动分析脚本4

NGless 是一个用于分析宏基因组数据的领域特定语言(DSL)。

安装和使用参考:生物信息学分析领域领先的特制语言环境NGLess(Next Generation Less)介绍、安装配置和详细使用方法-CSDN博客

以下是一个使用 NGless 的示例脚本,用于计算 contigs 或 genes 在样品中的相对丰度。请注意,这只是一个简化的示例,实际的分析脚本可能需要根据具体的数据和需求进行调整。

# 加载所需模块
ngless "0.11"
import "mapped"# 定义输入文件
input = paired('sample_R1.fastq.gz', 'sample_R2.fastq.gz') using |read|:read = read.subsample(percent=10)  # 使用10%的数据进行演示# 比对reads到Contigs或Genes
mapped = map(input, reference='contigs.fasta.gz', fafile=True) using |read|:read = read.subsample(percent=10)  # 使用10%的数据进行演示# 计算覆盖度
cov = coverage(mapped)# 计算Contigs或Genes的相对丰度
geneabundance = abundance(cov)# 输出结果
write(geneabundance, ofile='gene_relative_abundance.txt', format="tsv")

NGless 脚本说明:

  1. 模块导入和输入定义: 使用 ngless 版本 0.11,并导入 mapped 模块。定义输入文件为样品的 paired-end 测序 reads。

  2. 比对 reads 到 Contigs 或 Genes: 使用 map 函数将测序 reads 比对到 Contigs 或 Genes 的参考序列文件(这里是示意性的文件名 contigs.fasta.gz,实际需根据具体文件名修改)。

  3. 计算覆盖度: 使用 coverage 函数从比对结果中计算覆盖度信息。

  4. 计算相对丰度: 使用 abundance 函数从覆盖度信息中计算Contigs或Genes的相对丰度。

  5. 输出结果: 使用 write 函数将相对丰度结果写入文件 gene_relative_abundance.txt,并以制表符分隔的文本格式保存。

自动分析脚本5

# R
# 加载所需的R包
library("GenomicRanges")## ######################获取contigs或者genes覆盖度数据
# 假设你有参考基因组文件为 genome.fa,测序 reads 文件为 reads.fastq# 步骤1:比对测序 reads 到参考基因组
# 这里假设使用Bowtie2进行比对,需要Bowtie2已安装
system("bowtie2-build genome.fa genome_index")  # 构建索引system("bowtie2 -x genome_index -U reads.fastq -S aligned.sam")  # 进行比对# 步骤2:将比对结果转换为BAM格式
# 需要安装samtools
system("samtools view -S -b aligned.sam > aligned.bam")# 步骤3:使用GenomicRanges包计算覆盖度
# 安装GenomicRanges包:install.packages("GenomicRanges")
library(GenomicRanges)# 读取 BAM 文件
bam <- readGAlignments("aligned.bam", use.names=TRUE, param=ScanBamParam(what="pos"))# 计算覆盖度
coverage <- coverage(bam)# 将覆盖度信息写入文件
write.table(coverage, file="coverage_data.txt", sep="\t", quote=FALSE, col.names=TRUE, row.names=TRUE)##############获取 contigs和genes 的长度数据
# 加载所需的R包
library("data.table")# 步骤1:从组装结果文件中获取Contigs的长度
# 假设有一个示意的组装结果文件(示意数据)
assembly_data <- fread("assembly_results.csv")  # 读取组装结果文件# 计算Contigs的长度
contigs_lengths <- nchar(assembly_data$Contig_Sequence)  # 假设Contig_Sequence列包含Contig序列
contigs_data <- data.frame(Contig = assembly_data$Contig_ID, Length = contigs_lengths)# 步骤2:从基因预测结果文件中获取Genes的长度
# 假设有一个示意的基因预测结果文件(示意数据)
gene_prediction_data <- fread("gene_prediction_results.csv")  # 读取基因预测结果文件# 计算Genes的长度
genes_lengths <- gene_prediction_data$Gene_End - gene_prediction_data$Gene_Start + 1
genes_data <- data.frame(Gene = gene_prediction_data$Gene_ID, Length = genes_lengths)# 显示Contigs和Genes的长度信息
print("Contigs长度信息:")
print(contigs_data)print("Genes长度信息:")
print(genes_data)############# 计算丰度
# 步骤1:读取数据
# 假设有Contigs或Genes的覆盖度数据和长度数据文件(示意)
coverage_data <- read.table("coverage_data.txt", header=TRUE)  # Contigs或Genes的覆盖度数据文件
gene_lengths <- read.table("gene_lengths.txt", header=TRUE)  # Contigs或Genes的长度数据文件# 步骤2:计算相对丰度
# 合并覆盖度数据和基因长度数据
merged_data <- merge(coverage_data, gene_lengths, by="Gene")# 计算相对丰度(示意:使用简单的覆盖度除以长度)
merged_data$Relative_Abundance <- merged_data$Coverage / merged_data$Length# 显示计算结果
print(merged_data)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/278406.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

centos下:mysql一些指令+mysql首次修改密码+mysql忘记密码修改

操作 查看mysql运行状态 systemctl status mysqld 停止mysql systemctl stop mysqld 启动mysql systemctl start mysqld 重启mysql systemctl restart mysqld 开启mysql开机自启动 systemctl enable mysqld 关闭mysql开机自启动 systemctl disable mysqld 查看具体的报错日…

t-io 程序执行后,jvm不退出的原因

基于t-io 1.7.3 版本分析源码 1、设定当前时间&#xff0c;每10毫秒执行一次 (非守护线程) 2、对应线程池的核心线程在AioServer启动时全部激活&#xff0c;并且添加空任务到阻塞队列&#xff0c;让核心线程(非守护线程)一直存活

如何使用ArcGIS Pro裁剪影像

对影像进行裁剪是一项比较常规的操作&#xff0c;因为到手的影像可能是多种范围&#xff0c;需要根据自己需求进行裁剪&#xff0c;这里为大家介绍一下ArcGIS Pro中裁剪的方法&#xff0c;希望能对你有所帮助。 数据来源 本教程所使用的数据是从水经微图中下载的影像和行政区…

nodejs微信小程序+python+PHP血液中心管理平台的设计与实现-计算机毕业设计推荐

在二十一世纪的今天&#xff0c;我国献血总量已经不容小觑&#xff0c;在全国人民的不懈努力下&#xff0c;贫血、缺血的病人已经有了足够的血液保障。与此同时&#xff0c;采血工作和血液入库、出库等工作也日愈繁重。为进一步提高采血工作和血液中心的工作效率&#xff0c;开…

锁--07_2---- index merge(索引合并)引起的死锁

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 案例分析生产背景死锁日志表结构执行计划 EXPLAN为什么会用 index_merge&#xff08;索引合并&#xff09;为什么用了 index_merge就死锁了解决方案注&#xff1a;M…

YOLOV8:最新探测物体状态综合指南

YLOLV8是最新的以YOO为基础的物体检测模型,提供最先进的性能。 利用前几部《yolo》,yolov8更快速更准确&#xff0c;同时为训练模式提供统一的框架 物体检测实例分割影像分类 到编写本文件时,许多功能还没有被添加到超催化剂YLOLV8存储库中。这包括训练有素的模型的一整套导…

【Trino权威指南(第二版)】Trino的架构、trino架构组件、 trino连接器架构的细节、trino的查询执行模型

文章目录 一. Trino架构1. 架构概览2. 协调器3. 发现服务4. 工作节点 二. 基于连接器的架构三. 查询执行模型1. 解析—>查询计划2. 查询计划 —> 分布式查询计划3. 运行阶段3.1. 基础概念切片&#xff1a;并行单元page 与 exchange算子pipeline切片的driverOperator 3.2.…

python每日学11:xpath的使用与调试

背景&#xff1a;最近在使用selenium 模拟浏览器作一些常规操作&#xff0c;在使用selenium的过程中接触到的一种定位方法&#xff0c;叫xpath, 这里说一下使用心得。 首先&#xff0c;我觉得如果只是简单使用的话是不用详细了解具体的语法规则的。 一、xpath怎么用&#xff1…

【FunASR】Paraformer语音识别-中文-通用-16k-离线-large-onnx

模型亮点 模型文件: damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorchParaformer-large长音频模型集成VAD、ASR、标点与时间戳功能&#xff0c;可直接对时长为数小时音频进行识别&#xff0c;并输出带标点文字与时间戳&#xff1a; ASR模型…

黑豹程序员-axios+springmvc传递数组

问题 奇怪的现象&#xff0c;axios在往后台传递数组时&#xff0c;springmvc竟然接收不到 解决 尝试多次无果&#xff0c;突然看一篇文章写vue中的数组不是真正的数组需要强转转化JSON.stringify 将信将疑下测试了一把&#xff0c;还真的传递成功了。 不光要JSON.stringify…

Nessus漏洞扫描报错:42873 - SSL Medium Strength Cipher Suites Supported (SWEET32)

个人搭建的windows server 2019服务器,被Nessus工具扫描出现三个漏洞,修复比较过程比较坎坷,特记录下 首先:报错信息: 42873 - SSL Medium Strength Cipher Suites Supported (SWEET32) 104743 - TLS Version 1.0 Protocol Detection 157288 - TLS Version 1.1 Protocol …

cgal教程 3D Alpha Wrapping

文章目录 3D Alpha Wrapping (3D alpha 包裹)1 介绍2 方法2.1 算法2.2 保证 3 接口4 选择参数4.1 alpha4.2 Offset4.3 关于“双面”包裹的注意事项 5 性能6 例子 3D Alpha Wrapping (3D alpha 包裹) 原文地址: https://doc.cgal.org/latest/Alpha_wrap_3/index.html#Chapter_3D…