智能优化算法应用:基于和声算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于和声算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于和声算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.和声算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用和声算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.和声算法

和声算法原理请参考:https://blog.csdn.net/u011835903/article/details/118724731
和声算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

和声算法参数如下:

%% 设定和声优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明和声算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/278586.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

BearPi Std 板从入门到放弃 - 先天神魂篇(5)(RT-Thread 按键响应)

简介 使用BearPi IOT Std开发板及主板自带两颗按键与用户灯, 实现按键控制灯亮灯灭主板: 主芯片: STM32L431RCT6 LED : PC13 \ 推挽输出\ 高电平点亮 串口: Usart1 KEY1 : PB2 \ 上拉 \ 按下下降沿触发(一次)/上下沿触发(两次,实现按下开、松开关) KEY2 : PB3 \ 上…

UML-认识6种箭头(画类图无烦恼)

文章目录 一、背景二、箭头详解2.1 泛化(Generalization)2.2 实现(Realize)2.3 依赖(Dependency)2.4 关联(Association)2.5 聚合(Aggregation)2.6 组合&#…

媒体直播平台有哪些,活动直播如何扩大曝光?

传媒如春雨,润物细无声,大家好,我是51媒体网胡老师。 媒体直播平台包括人民视频、新华社现场云、中国网、新浪新闻直播、搜狐视频直播、凤凰新闻直播、腾讯新闻直播等。活动直播想要扩大曝光,可以考虑以下方式: 1.选择…

【Unity】简单实现生成式电子围栏

【Unity】简单实现生成式电子围栏 三维电子围栏是一种通过使用三维技术和电子设备来建立虚拟围栏,用于监控和控制特定区域的系统。它可以通过使用传感器和摄像头来检测任何越界行为,并及时发出警报。这种技术可以应用于安防领域以及其他需要对特定区域进…

股票交易信息实时大屏(Kafka+storm+Redis+DataV)

目录 引言 需求分析: 思路 数据源: 数据传输: 数据处理: 数据统计: 数据可视化: 数据提取: 技术栈 技术实现 前端界面搭建 布局: ​ 组件: 通信&#x…

Netty常见的设计模式

简介 设计模式在软件开发中起着至关重要的作用,它们是解决常见问题的经过验证的解决方案。而Netty作为一个优秀的网络应用程序框架,同样也采用了许多设计模式来提供高性能和可扩展性。在本文中,我们将探讨Netty中使用的一些关键设计模式&…

修改yocto容量和编译

方法1: 1、修改bitbake.conf cd /home/yocto_build/axxia_support/yocto_build/poky/meta/conf/ vi bitbake.conf修改倍数参数,1.3为5G,13为50G IMAGE_OVERHEAD_FACTOR修改这个参数容量,大于initramfs,不然会报错 I…

目标检测图片截取目标分类图片

如果要训练一个分类模型却没有特定的分类数据集怎么办呢?可以换一种思路,将带有该目标的图片对所有想要的目标进行画标注框然后进行截图,就能得到特定的分类数据了。这么做的目的是:带有该目标的图片可能不会少,但是带…

Go 与 Rust:现代编程语言的深度对比

在快速发展的软件开发领域中,选择合适的编程语言对项目的成功至关重要。Go 和 Rust 是两种现代编程语言,它们都各自拥有一系列独特的特性和优势。本文旨在深入比较 Go 和 Rust,从不同的角度分析这两种语言,包括性能、语言特性、生…

UG NX二次开发(C++)-库缺少需要的入口点的原因与解决方案

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 1、前言2、“库缺少需要的入口点”错误展示3、可能出现的原因与解决方案3.1 对于采用CTRL+U方式调用3.2 对于menu菜单下调用1、前言 在UG NX二次开发过程中,有时会遇到形形色色的bug,比如有个读…

使用React实现随机颜色选择器,JS如何生成随机颜色

背景 在标签功能中,由于有「背景色」属性,每次新增标签时都为选择哪种颜色犯难。因此,我们思考如何通过JS代码生成随机颜色,提取一个通用的随机颜色生成工具,并基于React框架封装随机颜色选择器组件。 实际效果 原理…

Leaflet.Graticule源码分析以及经纬度汉化展示

目录 前言 一、源码分析 1、类图设计 2、时序调用 3、调用说明 二、经纬度汉化 1、改造前 2、汉化 3、改造效果 总结 前言 在之前的博客基于Leaflet的Webgis经纬网格生成实践中,已经深入介绍了Leaflet.Graticule的实际使用方法和进行了简单的源码分析。认…