【JAVA】CyclicBarrier源码解析以及示例

文章目录

      • 前言
      • CyclicBarrier源码解析以及示例
        • 主要成员变量
        • 核心方法
      • 应用场景
        • 任务分解与合并
          • 应用示例
        • 并行计算
          • 应用示例
        • 游戏开发
          • 应用示例
          • 输出结果
        • 数据加载
          • 应用示例
        • 并发工具的协同
        • 应用示例
      • CyclicBarrier和CountDownLatch的区别
        • 循环性:
        • 计数器的变化:
        • 用途:
        • 构造函数参数:
      • 专栏集锦
      • 总结
      • 写在最后

579a429daf314744b995f37351b46548

前言

在多线程编程中,同步工具是确保线程之间协同工作的重要组成部分。

CyclicBarrier(循环屏障)是Java中的一个强大的同步工具,它允许一组线程在达到某个共同点之前互相等待。

在本文中,我们将深入探讨CyclicBarrier的源码实现以及提供一些示例,以帮助您更好地理解和应用这个有趣的同步工具。


CyclicBarrier源码解析以及示例

主要成员变量
public class CyclicBarrier {private final ReentrantLock lock = new ReentrantLock();private final Condition trip = lock.newCondition();private final int parties;private int count;private final Runnable barrierCommand;
}
  • lock: 用于控制并发访问的重入锁。
  • trip: 条件变量,用于在屏障点上等待。
  • parties: 表示需要等待的线程数。
  • count: 表示当前已经到达屏障点的线程数。
  • barrierCommand: 在所有线程到达屏障点之后执行的命令,可以为null。
核心方法

await方法

public int await() throws InterruptedException, BrokenBarrierException {try {lock.lock();if (Thread.interrupted())throw new InterruptedException();int index = --count;if (index == 0) { // 如果是最后一个到达的线程boolean ranAction = false;try {final Runnable command = barrierCommand;if (command != null)command.run();ranAction = true;return 0;} finally {if (!ranAction)breakBarrier(); // 执行失败,重置屏障状态}}while (index > 0) {try {trip.await();} catch (InterruptedException ie) {if (index == 1 && !broken)breakBarrier();throw ie;}}if (broken)throw new BrokenBarrierException();return index;} finally {lock.unlock();}
}

上述代码主要完成以下几个任务:

  1. 减小计数器,表示有一个线程到达了屏障点。
  2. 如果是最后一个到达的线程,执行屏障命令(如果有),然后唤醒所有等待的线程。
  3. 如果不是最后一个到达的线程,进入等待状态,直到被唤醒。
  4. 处理中断异常和屏障破坏异常。

应用场景

任务分解与合并

当一个大任务可以分解为多个子任务,每个子任务独立执行,但在某个点上需要等待所有子任务完成后再继续执行父任务。CyclicBarrier可以用来同步这些子任务的执行,确保它们在特定的屏障点上等待,然后一起继续执行。

应用示例

假设我们有一个大型的数据处理任务,需要将数据分解为若干子任务并行处理,然后在所有子任务完成后进行结果的合并。CyclicBarrier 可以用来同步子任务的执行,确保在所有子任务都完成后再进行合并操作。

import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;public class TaskDecompositionAndMergeExample {private static final int NUM_SUBTASKS = 3;private static final CyclicBarrier barrier = new CyclicBarrier(NUM_SUBTASKS, () -> {System.out.println("All subtasks have been completed. Merging results...");});public static void main(String[] args) {for (int i = 0; i < NUM_SUBTASKS; i++) {final int subtaskId = i;new Thread(() -> {// Perform individual subtaskSystem.out.println("Subtask " + subtaskId + " is processing.");// Simulate some computation for the subtasktry {Thread.sleep((long) (Math.random() * 1000));} catch (InterruptedException e) {e.printStackTrace();}System.out.println("Subtask " + subtaskId + " has completed.");try {// Wait for all subtasks to completebarrier.await();} catch (InterruptedException | BrokenBarrierException e) {e.printStackTrace();}}).start();}}
}
并行计算

在并行计算中,当多个计算节点完成局部计算后,需要将它们的结果合并。CyclicBarrier可以用来等待所有计算节点完成局部计算,然后执行合并操作。

应用示例
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;public class ParallelComputingExample {private static final int NUM_THREADS = 4;private static final CyclicBarrier barrier = new CyclicBarrier(NUM_THREADS, () -> {System.out.println("All threads have completed the computation. Merging results...");});public static void main(String[] args) {for (int i = 0; i < NUM_THREADS; i++) {final int threadId = i;new Thread(() -> {// Perform individual computationSystem.out.println("Thread " + threadId + " is performing computation.");// Simulate some computation for the threadtry {Thread.sleep((long) (Math.random() * 1000));} catch (InterruptedException e) {e.printStackTrace();}System.out.println("Thread " + threadId + " has completed computation.");try {// Wait for all threads to complete computationbarrier.await();} catch (InterruptedException | BrokenBarrierException e) {e.printStackTrace();}}).start();}}
}
游戏开发

在多线程游戏开发中,可能存在多个线程分别负责不同的任务,比如渲染、物理模拟、AI计算等。

在每一帧结束时,这些线程需要同步,确保下一帧开始时所有任务都已完成。CyclicBarrier可以在每一帧结束时等待所有任务完成,然后统一开始下一帧的计算。

比如我们在打匹配游戏的时候,十个人必须全部加载到100%,才可以开局。否则只要有一个人没有加载到100%,那这个游戏就不能开始。先加载完成的玩家必须等待最后一个玩家加载成功才可以。

应用示例
public class CyclicBarrierDemo {private static CyclicBarrier cyclicBarrier;static class CyclicBarrierThread extends Thread{@Overridepublic void run() {System.out.println("玩家 " + Thread.currentThread().getName() + " 加载100%");//等待try {cyclicBarrier.await();} catch (Exception e) {e.printStackTrace();}}}public static void main(String[] args){cyclicBarrier = new CyclicBarrier(10, new Runnable() {public void run() {System.out.println("玩家都加载好了,开始游戏....");}});for(int i = 0 ; i < 10 ; i++){new CyclicBarrierThread().start();}}
}
输出结果
玩家 Thread-0 加载100%
玩家 Thread-2 加载100%
玩家 Thread-3 加载100%
玩家 Thread-6 加载100%
玩家 Thread-1 加载100%
玩家 Thread-4 加载100%
玩家 Thread-5 加载100%
玩家 Thread-8 加载100%
玩家 Thread-7 加载100%
玩家 Thread-9 加载100%
玩家都加载好了,开始游戏....
数据加载

在某些应用中,可能需要同时加载多个数据源,但要确保所有数据加载完成后再继续执行。CyclicBarrier可以用来等待所有数据加载完成,然后执行后续操作。

应用示例
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;public class DataLoaderExample {private static final int NUM_THREADS = 3;private static final CyclicBarrier barrier = new CyclicBarrier(NUM_THREADS, () -> {System.out.println("All data loading threads have completed. Initiating further processing...");});public static void main(String[] args) {for (int i = 0; i < NUM_THREADS; i++) {final int threadId = i;new Thread(() -> {// Simulate data loadingSystem.out.println("Thread " + threadId + " is loading data.");// Simulate data loading timetry {Thread.sleep((long) (Math.random() * 1000));} catch (InterruptedException e) {e.printStackTrace();}System.out.println("Thread " + threadId + " has completed data loading.");try {// Wait for all data loading threads to completebarrier.await();} catch (InterruptedException | BrokenBarrierException e) {e.printStackTrace();}// Perform further processing after data loading is completeSystem.out.println("Thread " + threadId + " is performing further processing.");}).start();}}
}
并发工具的协同

CyclicBarrier可以与其他并发工具一起使用,例如 ExecutorServiceCountDownLatch,以实现更复杂的多线程控制逻辑。

应用示例
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;public class CyclicBarrierExample {private static final int NUM_THREADS = 3;private static final CyclicBarrier barrier = new CyclicBarrier(NUM_THREADS, () -> {System.out.println("All threads have reached the barrier. Let's continue!");});public static void main(String[] args) {for (int i = 0; i < NUM_THREADS; i++) {new Thread(() -> {try {// Perform individual tasksSystem.out.println(Thread.currentThread().getName() + " is performing individual tasks.");// Wait for all threads to reach the barrierbarrier.await();// Continue with collective tasks after reaching the barrierSystem.out.println(Thread.currentThread().getName() + " is performing collective tasks.");} catch (InterruptedException | BrokenBarrierException e) {e.printStackTrace();}}).start();}}
}

CyclicBarrier和CountDownLatch的区别

循环性:
  • CyclicBarrier 具有循环的特性,可以被重复使用。一旦所有线程都到达屏障点,它会自动重置并再次等待下一轮。这使得 CyclicBarrier 更适合用于一组线程多次协同工作的场景。
  • CountDownLatch 是一次性的,一旦计数到达零,就无法重新设置。如果需要多次等待,就需要创建新的 CountDownLatch 实例。
计数器的变化:
  • CyclicBarrier 中,计数器的递减是由到达屏障点的线程执行的,而且在所有线程都到达之前,任何线程都不会继续执行。
  • CountDownLatch 中,计数器的递减是由任意线程执行的,而且线程在递减计数器后可以继续执行,不必等待其他线程。
用途:
  • CyclicBarrier 通常用于一组线程并行执行任务,然后在某个点上等待彼此,然后再一起继续执行下一轮任务。例如,任务分解与合并、并行计算等场景。
  • CountDownLatch 用于等待一组线程完成某个任务后再执行其他任务。例如,主线程等待所有工作线程完成工作后再继续执行。
构造函数参数:
  • CyclicBarrier 的构造函数需要指定参与同步的线程数,以及在屏障点上执行的可选操作(Runnable)。
  • CountDownLatch 的构造函数需要指定计数的初始值。

专栏集锦

大佬们可以收藏以备不时之需:

Spring Boot 专栏:http://t.csdnimg.cn/peKde

ChatGPT 专栏:http://t.csdnimg.cn/cU0na

Java 专栏:http://t.csdnimg.cn/YUz5e

Go 专栏:http://t.csdnimg.cn/Jfryo

Netty 专栏:http://t.csdnimg.cn/0Mp1H

Redis 专栏:http://t.csdnimg.cn/JuTue

Mysql 专栏:http://t.csdnimg.cn/p1zU9

架构之路 专栏:http://t.csdnimg.cn/bXAPS


总结

通过本文,我们深入了解了CyclicBarrier的源码实现,并通过一个简单的示例演示了它的用法。

CyclicBarrier是一个强大的同步工具,可以帮助我们实现复杂的多线程协同任务。

在多线程编程中,理解和熟练使用这样的同步工具是至关重要的,能够确保线程之间的协同工作更加高效和可靠。


写在最后

感谢您的支持和鼓励! 😊🙏

如果大家对相关文章感兴趣,可以关注公众号"架构殿堂",会持续更新AIGC,java基础面试题, netty, spring boot, spring cloud等系列文章,一系列干货随时送达!

csdn-end

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/283424.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

I2C总线(二)注册控制器

一、i2c适配器 i2c适配器在硬件层面其实就是i2c控制器&#xff0c;因为跟芯片相关&#xff0c;一般内核会带对应厂商的芯片驱动&#xff0c;实现在i2c/busses中找好了。 我们直接看代码&#xff0c;以imx6为例。 1、平台总线匹配 imx6中是做了&#xff0c;驱动和设备树分离…

AIGC(生成式AI)试用 15 -- 小结

断断续续的尝试在实际的工作使用中理解和测试AIGC&#xff0c;运用会越来越多、越来越广范&#xff0c;但也是时候做个小结了。 没有太用热火的ChatGPT&#xff0c;只是拿了日常最容易用到的CSDN创作助手&#xff08;每周写文章总是看到&#xff09;和文心一言&#xff08;…

检测头篇 | RT-DETR 添加 小目标检测头 (P2,P3,P4,P5)

往期推荐 百度 RT-DETR 算法原理解析 | 超越YOLO的目标检测新高度? 手把手教你使用云服务器训练 RT-DETR (Pytorch版) RT-DETR 项目【训练】【验证】【推理】脚本 | 最新更新🍀 直接打印 FPS,mAP50,mAP75,mAP95🍀 RT-DETR Bug 及解决方案汇总 【训练 & 断点续训】 …

YOLOv3-YOLOv8的一些总结

0 写在前面 这个文档主要总结YOLO系列的创新点&#xff0c;以YOLOv3为baseline。参考(抄)了不少博客&#xff0c;就自己看看吧。有些模型的trick不感兴趣就没写进来&#xff0c;核心的都写了。 YOLO系列的网络都由四个部分组成&#xff1a;Input、Backbone、Neck、Prediction…

数据分析为何要学统计学(4)——何为置信区间?它有什么作用?

置信区间是统计学中的一个重要工具&#xff0c;是用样本参数()估计出来的总体均值在某置信水平下的范围。通俗一点讲&#xff0c;如果置信度为95%&#xff08;等价于显著水平a0.05&#xff09;&#xff0c;置信区间为[a,b]&#xff0c;这就意味着总体均值落入该区间的概率为95%…

Kubernetes (k8s) 快速认知

应用部署方式 传统部署时代 早期的时候&#xff0c;各个组织是在物理服务器上运行应用程序。缺点 资源分配问题&#xff1a; 无法限制在物理服务器中运行的应用程序资源使用 维护成本问题&#xff1a; 部署多个物理机&#xff0c;维护许多物理服务器的成本很高 虚拟化部署时…

c++11--左值,右值,移动语义,引用折叠,模板类型推断,完美转发

1.移动语义 移动构造和移动赋值均属于移动语义范畴。 移动语义的实现依赖于右值概念&#xff0c;右值引用。 1.1.一个移动构造的实例 #include <iostream> using namespace std; class HasPtrMem{ public:HasPtrMem():d(new int(3)){cout << "Construct: &qu…

Redis Set类型

集合类型也是保存多个字符串类型的元素的&#xff0c;但和列表类型不同的是&#xff0c;集合中 1&#xff09;元素之间是无序的 2&#xff09;元素不允许重复 一个集合中最多可以存储2的32次方个元素。Redis 除了支持集合内的增删查改操作&#xff0c;同时还支持多个集合取交…

链表之带头双向循环链表(C语言版)

我们之前已经介绍过链表的知识了&#xff0c;这里我们直接开始实现带头双向循环链表 数据结构之单链表&#xff08;不带头单向非循环链表&#xff09;-CSDN博客 第一步&#xff1a;定义结构体 //定义结构体 typedef int SLTDateType; typedef struct Listnode {SLTDateType d…

【消息中间件】Rabbitmq的基本要素、生产和消费、发布和订阅

原文作者&#xff1a;我辈李想 版权声明&#xff1a;文章原创&#xff0c;转载时请务必加上原文超链接、作者信息和本声明。 文章目录 前言一、消息队列的基本要素1.队列:queue2.交换机:exchange3.事件:routing_key4.任务:task 二、生产消费模式1.安装pika2.模拟生产者进程3.模…

Web前端-HTML(常用标签)

文章目录 1. HTML常用标签1.1 排版标签1&#xff09;标题标签h (熟记)2&#xff09;段落标签p ( 熟记)3&#xff09;水平线标签hr(认识)4&#xff09;换行标签br (熟记)5&#xff09;div 和 span标签(重点)6&#xff09;排版标签总结 1.2 标签属性1.3 图像标签img (重点)1.4 链…

shell子进程管理

简介 在我们平时写代码过程中&#xff0c;可能经常会遇到串行执行速度慢 &#xff0c;串行无法执行多个任务&#xff0c;这时便需要使用子进程同时执行。使用父进程创建子进程时&#xff0c;子进程会复制父进程的内存、文件描述符和其他相关信息。当然&#xff0c;子进程可以独…