[原创][R语言]股票分析实战[2]:周级别涨幅趋势的相关性

[简介]
常用网名: 猪头三
出生日期: 1981.XX.XX
QQ联系: 643439947
个人网站: 80x86汇编小站 https://www.x86asm.org
编程生涯: 2001年~至今[共22年]
职业生涯: 20年
开发语言: C/C++、80x86ASM、PHP、Perl、Objective-C、Object Pascal、C#、Python
开发工具: Visual Studio、Delphi、XCode、Eclipse、C++ Builder
技能种类: 逆向 驱动 磁盘 文件
研发领域: Windows应用软件安全/Windows系统内核安全/Windows系统磁盘数据安全/macOS应用软件安全
项目经历: 磁盘性能优化/文件系统数据恢复/文件信息采集/敏感文件监测跟踪/网络安全检测

[序言]
从上一章内容: [原创][R语言]股票分析实战[1]:周级别涨幅趋势的相关性-CSDN博客, 通过使用卡方独立检测chisq.test()发现"涨幅(RC)"和"跟周1~周5(DW)"的两者关系是独立的, 也就是说没有相互影响的可能性. 那么这时候, 是不是要放弃了呢?其实数据分析工作, 还没做完, 不要忘记了, xtabs()函数生成的是频率表, 那么也就说除了"涨幅(RC)"和"周1~周5(DW)"这2个变量之外, 还有第3个变量, 那就是"频率(Freq)"

[继续探索"涨幅(RC)", "周1~周5(DW)", "频率(Freq)"的交叉关系]
要一次性分析这3个变量的交叉关系, 是否有内在的隐藏关系, 那么可以使用gmodels包中的CrossTable()函数, 查看"频率(Freq)"的"预期值"和"卡方贡献值", 通过这查看这2个数值, 可以观察出"频率(Freq)"与"涨幅(RC)", "频率(Freq)"与"周1~周5(DW)"的交叉关系.

library(gmodels)
CrossTable(stock_demo_rc_token$RC, stock_demo_rc_token$DW, expected = TRUE, prop.r = FALSE, prop.c = FALSE, prop.t = FALSE)

通过上面的代码, 就可以显示出"频率(Freq)"与"涨幅(RC)", "频率(Freq)"与"周1~周5(DW)"的交叉关系, 并且很容易看出异常值, 如下图说明:

1> 红圈表示: 实际频率 大于 预期频率 表示 正方向活跃
2> 绿圈表示: 实际频率 小于 预取频率 表示 反方向活跃
3> 红圈和绿圈 都有共同的特征: 卡方贡献值 都大于 1.0, 表示异动

那么从这3个描述在配合下图来看, 很明显周1~周5都有圈圈, 另外周3与周5有2个圈圈, 这种情况表明 "频率(Freq)" 与 "涨幅(RC)"和"周1~周5(DW)" 都有关系, 且还可以表示交易是否活跃的关系, 大家可要认真看如下的描述, 这是非常关键的.

1> 可以发现周1~周2的活跃度是在%6涨幅区间.
2> 可以发现周3~周5的活跃度是在7%涨幅以上区间, 甚至在周5, 10%涨幅的活跃度还不错, 但可惜是反方向活跃, 也就意味着是冲高出货.
3> 可以发现周3和周5, 比 周1, 周2, 周4 活跃. 因为周3和周5有2个圈圈.
4> 可以发现周1, 周2, 周4活跃度持平, 但是周4涨幅更大.
太令人兴奋了, 初步总结出一个规律: 周3, 周4, 周5的交易比周1, 周2活跃. (但别高兴, 虽然从数据看出了一点蛛丝马迹, 但是还需要继续分析, "频率(Freq)"与"涨幅(RC)", "频率(Freq)"与"周1~周5(DW)" 哪个 关系最密切?)

["频率(Freq)"与"涨幅(RC)", "频率(Freq)"与"周1~周5(DW)" 哪个 关系最密切?]
为了研究这个关系, 我们需要为这3个变量生成一个一维的数据表, 包含3列分别是: RC, DW, Freq. 代码如下:

stock_demo_rc_table <- xtabs(~ RC + DW, stock_demo_rc_token) # 生成频率表
stock_demo_rc_table_Freq <- as.data.frame(stock_demo_rc_table) # 把频率表转换为具有3列的矩阵
stock_demo_rc_table_Freq$RC <- as.integer(stock_demo_rc_table_Freq$RC) # 把RC因子转换为int型
stock_demo_rc_table_Freq$DW <- as.integer(stock_demo_rc_table_Freq$DW) # 把DW因子转换为int型

通过执行上面的代码,可以得到如下的表格.


非常重要, 再次查看"频率(Freq)", "涨幅(RC)", "周1~周5(DW)"的交叉关系, 也就是相互关系. 执行如下并可以看到一些数据

cor(stock_demo_rc_table_Freq)

          RC             DW             Freq
RC    1.0000000 0.0000000 -0.1937841
DW    0.0000000 1.0000000  0.0504346
Freq -0.1937841 0.0504346  1.0000000

那么如何看上面的数据呢?下面认真看如下描述

1> "频率(Freq)"与"涨幅(RC)" 关系值是: 0.1937841 (这里先不考虑正负关系)
2>  "频率(Freq)"与"周1~周5(DW)" 关系值是: 0.0504346
3> "涨幅(RC)"与"周1~周5(DW)" 没有任何关系 (这点跟用chisq.test()验证是一样的结果)

很显然, "频率(Freq)"与"涨幅(RC)"关系最密切, 因为 0.1937841 > 0.0504346, 但是他们是负方向关系. 也就是说: 当"频率(Freq)"增大的时候, "涨幅(RC)"就会降低. 反之 "频率(Freq)"减小的时候, 涨幅(RC)"就会增大. 这就非常贴切, 非常符合现实中的炒股情况. 在大A股市场, 确实涨停的股票就很少, 也就是说涨停的频率不高或者很低. 那么另外看看"涨幅(RC)"与"周1~周5(DW)"的关系, 很显然2者关系很弱, 没有太大显著关系, 但还好有一点好的迹象, 那就是他们是正方向的, 也就是说随着时间周1到周5的移动,  "频率(Freq)"会慢慢增加. 这又是一个关键的信息了, 也就说股票交易的活跃度随着时间向周5推移, 活跃度缓慢提升. 

[最后总体概括: 用CrossTable()分析出来的数据 与 cor() 是一致的, 关键信息如下]

1> 根据CrossTable()分析出来的关键信息是: 周1~周2交易不活跃, 周3开始启动, 周5交易活跃度达到最强
3> 根据cor()分析出来的关键是: 交易活跃度随着时间推进, 而变强.

[结尾]
通过上面的分析, 都是通过数值来进行挖掘, 那么通过数值挖掘出来的规律, 用图形来显示, 是否也是一样的特征规律呢? 下一篇我们可以通过图形进一步观察已经分析出来的关键信息.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/283891.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JavaOOP篇----第三篇

系列文章目录 文章目录 系列文章目录前言一、标识符的命名规则二、instanceof关键字的作用三、什么是隐式转换&#xff0c;什么是显式转换 前言 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到…

Spring Boot 3 + Vue 3 整合 WebSocket (STOMP协议) 实现广播和点对点实时消息

&#x1f680; 作者主页&#xff1a; 有来技术 &#x1f525; 开源项目&#xff1a; youlai-mall &#x1f343; vue3-element-admin &#x1f343; youlai-boot &#x1f33a; 仓库主页&#xff1a; Gitee &#x1f4ab; Github &#x1f4ab; GitCode &#x1f496; 欢迎点赞…

【Java】基于fabric8io库操作k8s集群实战(pod、deployment、service、volume)

目录 前言一、基于fabric8io操作pod1.1 yaml创建pod1.2 fabric8io创建pod案例 二、基于fabric8io创建Service&#xff08;含Deployment&#xff09;2.1 yaml创建Service和Deployment2.2 fabric8io创建service案例 三、基于fabric8io操作Volume3.1 yaml配置挂载存储卷3.2 基于fa…

Java SM2 国密算法(最权威)!

国密SM2算法简介 国密SM2算法是一种椭圆曲线公钥密码算法&#xff0c;其安全性基于椭圆曲线离散对数难题。该算法由国家密码管理局设计并公开&#xff0c;用于国家关键信息系统的数据加密、解密和数字签名等操作&#xff0c;是我国自主创新的一种密码算法。 一、SM2算法概述…

通话状态监听-Android13

通话状态监听-Android13 1、Android Telephony 模块结构2、监听和广播获取通话状态2.1 注册2.2 通话状态通知2.3 通话状态 3、通知状态流程* 关键日志 frameworks/base/core/java/android/telephony/PhoneStateListener.java 1、Android Telephony 模块结构 Android Telephony…

开发电子商务网站/APP如何对接淘宝/天猫商品详情的API接口来丰富自建商城的产品展示

随着电子商务的快速发展&#xff0c;越来越多的企业开始意识到建立电子商务网站的重要性。下面我们将从产品、营销和客户服务三个方面来探讨电子商务网站的构建与运营策略。 1产品分析 在构建电子商务网站时&#xff0c;首先要对产品进行深入的分析。要明确产品的特点、优势和…

From Human Attention to Computational Attention (Foundation2)

Chapter 3 How to Measure Attention? 对注意力感兴趣的研究人员通常有以下一个或多个目标: (1)识别环境中被观察者选择和优先考虑的信息源; (2)量化注意力对任务表现的影响; (3)识别注意力的神经关联。 在考虑测量注意的方法时&#xff0c;区分显性和隐性定向机制是很重要的…

Flink系列之:监控Checkpoint

Flink系列之&#xff1a;监控Checkpoint 一、概览二、概览&#xff08;Overview&#xff09;选项卡三、历史记录&#xff08;History&#xff09;选项卡四、历史记录数量配置五、摘要信息&#xff08;Summary&#xff09;选项卡六、配置信息&#xff08;Configuration&#xff…

【XR806开发板试用】+ 通过网络控制led并上报按键状态

通过网络控制led并上报按键状态 本次做一个手机通过mqtt服务器控制板子上的LED亮灭&#xff0c;板子也可以将按钮状态变化通过mqtt服务器上报给手机的功能 硬件上&#xff0c;从原理图看&#xff0c;LED接到了PA21&#xff0c;高电平点亮。 按键则时接到了PA11&#xff0c;并…

VuePress安装及使用

前言 VuePress 是一个以 Markdown 为中心的静态网站生成器。你可以使用 Markdown 来书写内容&#xff08;如文档、博客等&#xff09;&#xff0c;然后 VuePress 会帮助你生成一个静态网站来展示它们。 例如&#xff1a;JavaFX 前言 这个博客网站就是使用 VuePress 生成的&am…

「Verilog学习笔记」交通灯

专栏前言 本专栏的内容主要是记录本人学习Verilog过程中的一些知识点&#xff0c;刷题网站用的是牛客网 timescale 1ns/1nsmodule triffic_light(input rst_n, //异位复位信号&#xff0c;低电平有效input clk, //时钟信号input pass_request,output wire[7:0]clock,output reg…

Kotlin 笔记 -- Kotlin 语言特性的理解(二)

都是编译成字节码&#xff0c;为什么 Kotlin 能支持 Java 中没有的特性&#xff1f; kotlin 有哪些 Java 中没有的特性&#xff1a; 类型推断、可变性、可空性自动拆装箱、泛型数组高阶函数、DSL顶层函数、扩展函数、内联函数伴生对象、数据类、密封类、单例类接口代理、inter…