基于物联网表计的综合能源管理方案——安科瑞 顾烊宇

为加快推进国家“双碳”战略和新型能源体系建设,努力实现负荷准确控制和用户精细化管理,按照“政府主导、电网组织、政企协同、用户实施”的指导原则,多地成立市/县级电力负荷管理中心,包括浙江宁波、慈溪、辽宁大连、湖南株洲、娄底、湖北宜昌、黄冈、山西临汾等地,标志着各地在能源领域数字化改革迈出了实质性的关键一步,对加快推进新型能源体系建设、实施能源大数据战略、发展数字经济、建设智慧城市具有重要意义。比如宁波市能源大数据管理中心已接入宁波1万余户规上企业及3079家用能企业用能数据、698个公共建筑单位空调负荷数据,上线了公共建筑空调负荷管理、产业园能源管理、绿色工厂能源监测等20余项能源大数据产品。

以上市级电力负荷管理中心建设安科瑞也部分参与,本文结合城市新型智慧能源体系对能源数字化系统的要求和安科瑞能源数字化技术,为能源互联、交互以及协调优化,持续推进新型能源体系建设提供初步解决方案。

1综合智慧能源系统概述

传统的能源管理系统模式围绕单一主体进行电力等能源的监测已经无法满足新型能源体系需求,而科学、系统性的综合智慧能源管理采用大数据信息集成模式,既实现了对新能源消纳的优化和能源利用效率的改善,还实现了单一设备节能向智能化、系统化等方向转变。综合智慧能源管理系统实现了对能源系统各个单元的数据进行采集和监测、预测与管理,从而为高质量利用能源和提供服务打下了良好的基础,各地建设电力负荷中心的目的也是如此。综合智慧能源系统根据动态能源价格机制,以电网、分布式发电、储能系统、可调负荷、电动汽车充电桩为物理基础,根据不同阶段的电力需求进行自动调节,保障电力系统的稳定运行。总体上来说,综合智慧能源管理系统已经成为新型能源体系建设的重要环节。

2综合智慧能源管理系统总体架构

综合智慧能源管理系统的参与方很多,包括电网、能源服务商、大中小微用能企业甚至个人等,这是一个需要多方参与的系统,系统需要有很好的兼容性和易用性。首先,系统的设计需要支持多种工业接口的应用,如第三方系统接口、智能感知设备接口以及用能设备等。其次,系统需要支持方便的数据获取和互动,包括移动端APP、小程序、WEB端等。此外,系统需要接入的智能设备分布广,数量大,可以根据实际需求和网络情况,实现有线和无线混合组网模式,能够实现对各种能源的数据进行采集、分析和优化控制管理,如图1所示。

图片

图1 综合智慧能源管理系统架构

3综合智慧能源管理系统软件架构

软件架构主要包括感知层、数据层、应用层、展现层,如图2所示。感知层是由现场保护、测量、控制设备和其它子系统组成,通过有线/无线方式传输至数据中台;中台负责数据采集、数据处理、存储和交互,并分发给各类应用层;应用层根据用户需要,从能源供应、能源管理、负荷管理、能耗分析预测、能源运维运营等多个角度使用数据,并展示给不同的使用者,完成能源管理功能。综合智慧管理系统可以实现对多种类型的能源介质数据进行实时的采集和监控,并利用数字化技术更加直观地对能源数据进行展示和调控,使能源得到更好的利用。

图片

图2 综合智慧能源管理系统软件架构

4安科瑞综合智慧能源管理系统的应用

AcrelEMS企业微电网能效管理系统和Acrel-EIOT能源物联网平台解决方案正是基于上述理念而设计的综合智慧能源管理系统。AcrelEMS企业微电网能效管理系统是针对行业用户的能源管理平台,包括医疗建筑、教育建筑、高速公路、电子厂房等,提供基于行业特点细分的能效管理解决方案;而Acrel-EIOT能源物联网云平台针对地域分散、数量众多的物联网设备,提供免调试方案,方便中小微用户更方便的把设备接入平台并低成本获取所需数据,比如充电桩运营、分散的能源计量和收费等,对用户无地域限制、无专业技能要求,目前已经为多个国家的用户提供能源数据服务。两套系统基于同样的数据中台,衍生不同的应用为不同类型的用户提供覆盖“源网荷储充维”一体化的能源管理解决方案,并根据用户设置的策略来管理能源的使用和调度。

4.1 基于行业能效提升的AcrelEMS企业微电网能效管理系统应用

AcrelEMS企业微电网能效管理系统提供基于行业特点细分的能效管理解决方案,支持有线/无线方案接入各类智能设备,并提供多种第三方系统接口协议,融合企业微电网电力监控、能耗统计、电能质量分析及治理、智能照明控制、主要用能设备监控、充电桩运营管理、分布式光伏监控、储能管理等功能,通过一个平台即可全局、整体的对企业电网进行进行集中监控、统一调度、统一运维,满足企业用电可靠、安全、节约、有序用电要求。平台支持中英文切换,现已应用于多个行业和地区用户侧能源管理和电力运维平台,单个平台已接入1600多个用户变电所数据,提供能源分析和运维管理功能。

图片

图3 AcrelEMS能效管理平台应用

电力监控

对企业高低压变配电系统的变压器、断路器、直流屏、母排、无功补偿柜及电缆等配电相关设备的电气参数、运行状态、接点温度进行实时监测和控制,监测企业微电网主要回路的电能质量并进行治理,对故障及时处理并发出告警信息,提高企业供电可靠性。

图片

图4 电力监控功能

能耗分析

采集企业电、水、燃气等能源消耗,进行分类分项能耗统计,计算单位面积或单位产品的能耗数据以及趋势,对标主要用能设备能效进行能效诊断,计算企业碳排放,为企业制定碳达峰、碳中和路线提供数据支持。

图片

图5 能耗分析功能

照明控制

智能照明控制功能可以根据企业情况实现定时控制、光照感应控制、场景控制、调光控制等,并结合红外传感器、超声波传感器,实现人来灯亮、人走灯灭,并可以根据系统的控制策略实现集中控制,为企业节约照明用电。

图片

图6照明控制功能

分布式光伏监控

监测企业分布式光伏电站运行情况,包括逆变器运行数据、光伏发电效率分析、发电量及收益统计以及光伏发电功率控制。

图片

图7 分布式光伏发电监测

储能管理

监测储能系统、电池管理系统(BMS)和储能变流器(PCS)运行,包括运行模式、功率控制模式,功率、电压、电流、频率等预定值信息、储能电池充放电电压、电流、SOC、温度,根据企业峰谷特点和电价波动以及上级平台指令设置储能系统的充放电策略,控制储能系统充放电,实现削峰填谷,降低企业用电成本。  

图片

图8 储能管理

充电桩运营管理 

监测企业充电桩的运行状态,提供充电桩收费管理和状态监测功能,并根据企业负荷率变化和虚拟电厂的调度指令调节充电桩的充电功率,使企业微电网稳定安全运行。

图片

图9 充电桩管理

4.2 基于大数据的Acrel-EIOT能源物联网平台应用

Acrel-EIoT能源物联网平台是一套基于物联网数据中台,执行统一的上下行数据标准,为互联网用户提供能源物联网数据服务的PAAS平台,平台支持中英文切换和自定义功能设置。用户安装物联网传感器安装后扫码操作即可把设备接入Acrel-EIoT平台,使用手机和电脑得到所需的行业数据服务,无需关注平台本身,不再需要知道下行硬件的结构和协议,不需要用户有专业的知识即可使用,目前已经多个国家的用户提供基于安科瑞产品的能源数据服务。

自定义驾驶舱

可根据用户的关注点自行绘制所需的驾驶舱页面,包括能源预收费、充电桩运营、电梯、空调、照明等各种设备的能耗统计、收益统计、运维情况等。

图片

图10 能源物联网驾驶舱定义

数据采集和数据监测

 实时监测各配电柜的电压、电流等电力参数,实现遥测、遥信、遥控。实时监测各配电室温湿度、烟感、水浸等环境参数。监视变压器的运行状态及用能参数,测算损耗,找出经济运行区间,降低能源损耗。

图片

图11 数据采集和监测

能耗统计分析

主要是对能耗的数据、能耗分项以及区域能耗和能耗指标等进行统计。其中还包含总能耗定比,也就是指实际消耗的能量所占据总能量的百分比,并利用各种图形的方式进行表示,用于综合能耗分析。

图片

图12 能耗统计分析

电气和消防安全管理

接入电气火灾探测器、无线测温传感器、智能断路器等设备,对配电回路的剩余电流、线缆温度等火灾危险参数进行实时监控和管理。在消防水池、消防水箱等地方安装消防水位表,检测消防水位的变化;消防水管、喷淋等地方安装消防水压表,检测消防管道的压力。在家庭、宾馆、公寓等存在烟雾、可燃气体的室内场所,安装独立式烟感或可燃气体探测器,检测这些场所是否存在烟雾和可燃气体。

图片

图13 电气消防安全管理

能源收费管理

适用于物业租赁方对出租物业的能源收费管理,支持水电一体化收费管理,具备租户开户、销户、退差操作,支持分时电价和阶梯电价设置和功率过载阈值设置,可对接支付应用程序实现自助支付。

图片

图14 能耗收费管理

充电桩运营管理

当用户要管理多个充电站的充电桩时可把充电桩自助接入平台,实现对充电桩状态的监测和扫码、刷卡充电收费管理。在用电高峰期如充电负荷过高超出供电变压器承受范围还可以自动设置充电功率限制或新增充电限制,或投入新能源,确保能源供应安全。

图片

图15 充电桩运营管理

照明控制管理

可远程控制照明设备的开关,并可以根据光照度、经纬度日出日落时间和时间设置策略来自动控制灯光,节约照明能源。

图片

图16 照明控制管理

碳排放分析

统计用户的碳排放量并追踪碳排放足迹,提供碳排放清单,进行配额核算和配额考核。

图片

图17 碳排放分析

4.3 安科瑞综合智慧能源管理感知设备

安科瑞针对综合智慧能源管理系统除了软件外,还具备现场传感器、智能网关等设备,组成了完整的“云-边-端”数字化体系,具体包括高低压配电综合保护和监测产品、电能质量在线监测装置、电能质量治理、照明控制、新能源充电桩、电气消防类解决方案等,可以为企业微电网数字化提供一站式服务能力,部分设备见表1。

图片

5结语

综合智慧能源管理系统设计和应用为新型能源体系的能源数字化管理提供了解决方案,为系统海量数据连接提供了技术上的支持。AcrelEMS企业微电网能效管理系统和Acrel-EIOT能源物联网平台配合安科瑞感知设备,为各行业大中小微型用户提供个性化能源管理方案,支持用户对能源系统的数字化监测和多源自动协同管理,帮助用户提高能源使用安全和提高能源使用效率,为建立稳定安全的新型能源体系贡献力量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/285502.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CompleteFuture与Future的比较

CompleteFuture的介绍CompleteFuture的特点CompleteFuture的应用场景CompletableFuture的优缺点Future的介绍Future的特点Future的应用场景Future的优缺点CompletableFuture和Future的区别CompletableFuture和Future的关联关系CompletableFuture和Future的使用示例CompletableF…

【Docker】Docker安装部署maven私服

文章目录 镜像拉取构建nexus实例登录maven私服如何查看实例初始化的admin密码呢?1.查看容器挂载卷2.找到nexus_nexus_data查看挂载卷详情3.查看admin账号密码4.登录并重置密码 使用nexus私服1.设置settings.xml2.设置idea pom 出现的问题小插曲 镜像拉取 docker pu…

【已解决】ModuleNotFoundError: No module named ‘taming‘

问题描述 Traceback (most recent call last) <ipython-input-14-2683ccd40dcb> in <module> 16 from omegaconf import OmegaConf 17 from PIL import Image ---> 18 from taming.models import cond_transformer, vqgan 19 import taming.modu…

基于Web的流浪狗收容领养管理平台的设计与实现论文

摘 要 现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;归纳&#xff0c;集中处理数据信息的管理方式。本浪狗收容领养管理平台就是在这样的大环境下诞生&#xff0c;其可以帮助管理者在短时间内处理完毕庞大的数据…

思幻二次元风格的工作室个人引导页源码

思幻工作室个人引导页源码已经完成开发&#xff01;该源码支持三端自适应&#xff0c;并且具备赞助功能。我们选择了当前点赞量最高的配色方案&#xff0c;打造了一个独特的二次元风格引导页。经过在美国服务器上进行的测试&#xff0c;效果令人满意&#xff0c;网页加载速度达…

卷积神经网络的学习与实现

基于matlab的卷积神经网络(CNN)讲解及代码_matlab中如何查看cnn损失函数-CSDN博客 可以看到与BP神经网络相比&#xff0c;卷积神经网络更加的复杂&#xff0c;这里将会以cnn作为学习案例。 1.经典反向传播算法公式详细推导 这里引用经典反向传播算法公式详细推导_反向目标公…

Android Studio(3.6.2版本)安装 java2smali 插件,java2smali 插件的使用方法简述

一、Android Studio&#xff08;3.6.2版本&#xff09;安装 java2smali 插件 1、左上角File—>Setting&#xff0c;如下图 2、Setting界面中&#xff1a;点击Plugins—>选择右侧上方Marketplace—>搜索栏输入java2smali&#xff0c;如下图 3、点击Install按钮—>点…

Webpack安装及使用

win系统 全局安装Webpack及使用 前提&#xff1a;使用Webpack必须安装node环境&#xff0c;建议使用nvm管理node版本。 1&#xff1a;查看自己电脑是否安装了node 2&#xff1a;npm install webpack版本号 -g 3&#xff1a;npm install webpack-cli -g -g:表示全局安装 4&…

【机器学习】卷积神经网络(CNN)的特征数计算

文章目录 基本步骤示例图解过程 基本步骤 在卷积神经网络&#xff08;CNN&#xff09;中&#xff0c;计算最后的特征数通常涉及到以下步骤&#xff1a; 确定输入尺寸&#xff1a; 首先&#xff0c;你需要知道输入数据的尺寸。对于图像数据&#xff0c;这通常是 (batch_size, c…

118. 杨辉三角

描述 : 给定一个非负整数 numRows&#xff0c;生成「杨辉三角」的前 numRows 行。 在「杨辉三角」中&#xff0c;每个数是它左上方和右上方的数的和。 题目 : LeetCode 118. 杨辉三角 : 118. 杨辉三角 分析 : 这道题用二维数组来做 . 解析 : class Solution {public Li…

力扣日记12.18-【二叉树篇】合并二叉树

力扣日记&#xff1a;【二叉树篇】合并二叉树 日期&#xff1a;2023.12.18 参考&#xff1a;代码随想录、力扣 617. 合并二叉树 题目描述 难度&#xff1a;简单 给你两棵二叉树&#xff1a; root1 和 root2 。 想象一下&#xff0c;当你将其中一棵覆盖到另一棵之上时&#xf…

强化产品联动:网关V7独家解决方案的三重优势

客户背景 某央企单位汇聚了众多业内优秀的工程师和科研人员&#xff0c;拥有先进的研发设施和丰富的研发经验&#xff0c;专注于为全球汽车行业提供创新和实用的解决方案。其研发成果不仅在国内市场上得到了广泛应用&#xff0c;也在国际市场上赢得了广泛的认可和赞誉。 客户需…