TransXNet实战:使用TransXNet实现图像分类任务(一)

文章目录

  • 摘要
  • 安装包
    • 安装timm
  • 数据增强Cutout和Mixup
  • EMA
  • 项目结构
  • 计算mean和std
  • 生成数据集

摘要

论文提出了一种名为D-Mixer的轻量级双动态TokenMixer,旨在解决传统卷积的静态性质导致的表示差异和特征融合问题。D-Mixer通过应用高效的全局注意力和输入依赖的深度卷积,分别对均匀分割的特征片段进行处理,使网络具有强大的归纳偏置和更大的有效感受野。以D-Mixer作为基本构建块,设计了新颖的混合CNN-Transformer视觉主干网络TransXNet,其性能优越。在ImageNet-1K图像分类任务中,TransXNet-T相比Swin-T在top-1准确率上提高了0.3%,同时计算成本更低。此外,TransXNet-S和TransXNet-B展示了出色的模型扩展性,分别实现了83.8%和84.6%的top-1准确率,且计算成本合理。此外,我们的网络架构在各种密集预测任务中展现出了强大的泛化能力,优于其他先进的网络结构,且计算成本更低。总之,D-Mixer和TransXNet作为一种高效且具有强大泛化能力的网络结构,为计算机视觉领域提供了新的解决方案。
在这里插入图片描述

这篇文章使用TransXNet完成植物分类任务,模型采用transxnet_t向大家展示如何使用TransXNet。transxnet_t在这个数据集上实现了96+%的ACC,如下图:

请添加图片描述

请添加图片描述

通过这篇文章能让你学到:

  1. 如何使用数据增强,包括transforms的增强、CutOut、MixUp、CutMix等增强手段?
  2. 如何实现TransXNet模型实现训练?
  3. 如何使用pytorch自带混合精度?
  4. 如何使用梯度裁剪防止梯度爆炸?
  5. 如何使用DP多显卡训练?
  6. 如何绘制loss和acc曲线?
  7. 如何生成val的测评报告?
  8. 如何编写测试脚本测试测试集?
  9. 如何使用余弦退火策略调整学习率?
  10. 如何使用AverageMeter类统计ACC和loss等自定义变量?
  11. 如何理解和统计ACC1和ACC5?
  12. 如何使用EMA?

如果基础薄弱,对上面的这些功能难以理解可以看我的专栏:经典主干网络精讲与实战
这个专栏,从零开始时,一步一步的讲解这些,让大家更容易接受。

安装包

安装timm

使用pip就行,命令:

pip install timm

mixup增强和EMA用到了timm

数据增强Cutout和Mixup

为了提高成绩我在代码中加入Cutout和Mixup这两种增强方式。实现这两种增强需要安装torchtoolbox。安装命令:

pip install torchtoolbox

Cutout实现,在transforms中。

from torchtoolbox.transform import Cutout
# 数据预处理
transform = transforms.Compose([transforms.Resize((224, 224)),Cutout(),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])

需要导入包:from timm.data.mixup import Mixup,

定义Mixup,和SoftTargetCrossEntropy

  mixup_fn = Mixup(mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,prob=0.1, switch_prob=0.5, mode='batch',label_smoothing=0.1, num_classes=12)criterion_train = SoftTargetCrossEntropy()

Mixup 是一种在图像分类任务中常用的数据增强技术,它通过将两张图像以及其对应的标签进行线性组合来生成新的数据和标签。
参数详解:

mixup_alpha (float): mixup alpha 值,如果 > 0,则 mixup 处于活动状态。

cutmix_alpha (float):cutmix alpha 值,如果 > 0,cutmix 处于活动状态。

cutmix_minmax (List[float]):cutmix 最小/最大图像比率,cutmix 处于活动状态,如果不是 None,则使用这个 vs alpha。

如果设置了 cutmix_minmax 则cutmix_alpha 默认为1.0

prob (float): 每批次或元素应用 mixup 或 cutmix 的概率。

switch_prob (float): 当两者都处于活动状态时切换cutmix 和mixup 的概率 。

mode (str): 如何应用 mixup/cutmix 参数(每个’batch’,‘pair’(元素对),‘elem’(元素)。

correct_lam (bool): 当 cutmix bbox 被图像边框剪裁时应用。 lambda 校正

label_smoothing (float):将标签平滑应用于混合目标张量。

num_classes (int): 目标的类数。

EMA

EMA(Exponential Moving Average)是指数移动平均值。在深度学习中的做法是保存历史的一份参数,在一定训练阶段后,拿历史的参数给目前学习的参数做一次平滑。具体实现如下:


import logging
from collections import OrderedDict
from copy import deepcopy
import torch
import torch.nn as nn_logger = logging.getLogger(__name__)class ModelEma:def __init__(self, model, decay=0.9999, device='', resume=''):# make a copy of the model for accumulating moving average of weightsself.ema = deepcopy(model)self.ema.eval()self.decay = decayself.device = device  # perform ema on different device from model if setif device:self.ema.to(device=device)self.ema_has_module = hasattr(self.ema, 'module')if resume:self._load_checkpoint(resume)for p in self.ema.parameters():p.requires_grad_(False)def _load_checkpoint(self, checkpoint_path):checkpoint = torch.load(checkpoint_path, map_location='cpu')assert isinstance(checkpoint, dict)if 'state_dict_ema' in checkpoint:new_state_dict = OrderedDict()for k, v in checkpoint['state_dict_ema'].items():# ema model may have been wrapped by DataParallel, and need module prefixif self.ema_has_module:name = 'module.' + k if not k.startswith('module') else kelse:name = knew_state_dict[name] = vself.ema.load_state_dict(new_state_dict)_logger.info("Loaded state_dict_ema")else:_logger.warning("Failed to find state_dict_ema, starting from loaded model weights")def update(self, model):# correct a mismatch in state dict keysneeds_module = hasattr(model, 'module') and not self.ema_has_modulewith torch.no_grad():msd = model.state_dict()for k, ema_v in self.ema.state_dict().items():if needs_module:k = 'module.' + kmodel_v = msd[k].detach()if self.device:model_v = model_v.to(device=self.device)ema_v.copy_(ema_v * self.decay + (1. - self.decay) * model_v)

加入到模型中。

#初始化
if use_ema:model_ema = ModelEma(model_ft,decay=model_ema_decay,device='cpu',resume=resume)# 训练过程中,更新完参数后,同步update shadow weights
def train():optimizer.step()if model_ema is not None:model_ema.update(model)# 将model_ema传入验证函数中
val(model_ema.ema, DEVICE, test_loader)

针对没有预训练的模型,容易出现EMA不上分的情况,这点大家要注意啊!

项目结构

TransXNet_Demo
├─data1
│  ├─Black-grass
│  ├─Charlock
│  ├─Cleavers
│  ├─Common Chickweed
│  ├─Common wheat
│  ├─Fat Hen
│  ├─Loose Silky-bent
│  ├─Maize
│  ├─Scentless Mayweed
│  ├─Shepherds Purse
│  ├─Small-flowered Cranesbill
│  └─Sugar beet
├─models
│  ├─__init__.py
│  └─transxnet.py
├─mean_std.py
├─makedata.py
├─train.py
└─test.py

mean_std.py:计算mean和std的值。
makedata.py:生成数据集。
ema.py:EMA脚本
train.py:训练RevCol模型
models:来源官方代码,对面的代码做了一些适应性修改。

计算mean和std

为了使模型更加快速的收敛,我们需要计算出mean和std的值,新建mean_std.py,插入代码:

from torchvision.datasets import ImageFolder
import torch
from torchvision import transformsdef get_mean_and_std(train_data):train_loader = torch.utils.data.DataLoader(train_data, batch_size=1, shuffle=False, num_workers=0,pin_memory=True)mean = torch.zeros(3)std = torch.zeros(3)for X, _ in train_loader:for d in range(3):mean[d] += X[:, d, :, :].mean()std[d] += X[:, d, :, :].std()mean.div_(len(train_data))std.div_(len(train_data))return list(mean.numpy()), list(std.numpy())if __name__ == '__main__':train_dataset = ImageFolder(root=r'data1', transform=transforms.ToTensor())print(get_mean_and_std(train_dataset))

数据集结构:

image-20220221153058619

运行结果:

([0.3281186, 0.28937867, 0.20702125], [0.09407319, 0.09732835, 0.106712654])

把这个结果记录下来,后面要用!

生成数据集

我们整理还的图像分类的数据集结构是这样的

data
├─Black-grass
├─Charlock
├─Cleavers
├─Common Chickweed
├─Common wheat
├─Fat Hen
├─Loose Silky-bent
├─Maize
├─Scentless Mayweed
├─Shepherds Purse
├─Small-flowered Cranesbill
└─Sugar beet

pytorch和keras默认加载方式是ImageNet数据集格式,格式是

├─data
│  ├─val
│  │   ├─Black-grass
│  │   ├─Charlock
│  │   ├─Cleavers
│  │   ├─Common Chickweed
│  │   ├─Common wheat
│  │   ├─Fat Hen
│  │   ├─Loose Silky-bent
│  │   ├─Maize
│  │   ├─Scentless Mayweed
│  │   ├─Shepherds Purse
│  │   ├─Small-flowered Cranesbill
│  │   └─Sugar beet
│  └─train
│      ├─Black-grass
│      ├─Charlock
│      ├─Cleavers
│      ├─Common Chickweed
│      ├─Common wheat
│      ├─Fat Hen
│      ├─Loose Silky-bent
│      ├─Maize
│      ├─Scentless Mayweed
│      ├─Shepherds Purse
│      ├─Small-flowered Cranesbill
│      └─Sugar beet

新增格式转化脚本makedata.py,插入代码:

import glob
import os
import shutilimage_list=glob.glob('data1/*/*.png')
print(image_list)
file_dir='data'
if os.path.exists(file_dir):print('true')#os.rmdir(file_dir)shutil.rmtree(file_dir)#删除再建立os.makedirs(file_dir)
else:os.makedirs(file_dir)from sklearn.model_selection import train_test_split
trainval_files, val_files = train_test_split(image_list, test_size=0.3, random_state=42)
train_dir='train'
val_dir='val'
train_root=os.path.join(file_dir,train_dir)
val_root=os.path.join(file_dir,val_dir)
for file in trainval_files:file_class=file.replace("\\","/").split('/')[-2]file_name=file.replace("\\","/").split('/')[-1]file_class=os.path.join(train_root,file_class)if not os.path.isdir(file_class):os.makedirs(file_class)shutil.copy(file, file_class + '/' + file_name)for file in val_files:file_class=file.replace("\\","/").split('/')[-2]file_name=file.replace("\\","/").split('/')[-1]file_class=os.path.join(val_root,file_class)if not os.path.isdir(file_class):os.makedirs(file_class)shutil.copy(file, file_class + '/' + file_name)

完成上面的内容就可以开启训练和测试了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/286662.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Python炫酷系列】一闪一闪亮星星,漫天都是小星星(完整代码)

文章目录 环境需求完整代码详细分析系列文章环境需求 python3.11.4及以上版本PyCharm Community Edition 2023.2.5pyinstaller6.2.0(可选,这个库用于打包,使程序没有python环境也可以运行,如果想发给好朋友的话需要这个库哦~)【注】 python环境搭建请见:https://want595.…

EasyExcel模板导出(行和列自动合并)

1.需求背景: ①需要从第三方获取数据,第三方接口有两个参数,开始时间和结束时间 ②获取回来的数据并没有入库,所以不能通过数据库将数据归类统计,excel合并大概的流程是判断上一行或者左右相邻列是否相同,然后进行合并,所以不能是零散的数据且客户要求每一个自治区和每一个航站…

产品需求分析师的职责内容(合集)

产品需求分析师的职责内容1 职责: 1、根据公司战略规划,负责妇产科相关平台产品的中长期规划; 2、组织需求调研、收集、分析、整理、提炼、用户的需求,分析形成可行性研究报告; 3、深入挖掘产品需求,管理用户及公司内部业务需求&a…

深入浅出RPC:选取适合自己的RPC

文章目录 1、RPC概念&&背景1.1、RPC背景 1.2、RPC是什么,什么时候需要用到?2、进程间的通信 - IPC与RPC2.1、什么是IPC2.2、IPC与RPC联系 3、RPC的实现3.1、RPC实现的基本思路3.2、RPC实现的扩展方向 4、RPC的选择 1、RPC概念&&背景 1.…

EasyExcel合并相同内容单元格及动态标题功能的实现

一、最初版本 导出的结果: 对应实体类代码: import com.alibaba.excel.annotation.ExcelProperty; import com.alibaba.excel.annotation.write.style.ColumnWidth; import com.alibaba.excel.annotation.write.style.ContentLoopMerge; import com.al…

OpenShift 4 - 管理和使用 OpenShift AI 运行环境

《OpenShift / RHEL / DevSecOps 汇总目录》 说明:本文已经在 OpenShift 4.14 RHODS 2.50 的环境中验证 文章目录 启停 Notebook Server启动停止 Notebook 镜像Notebook Image 和 ImageStream使用定制的 Notebook Image 定制服务器的运行配置应用和项目用户和访问权…

《知识文库》期刊投稿方式

刊名:知识文库 主办单位:黑龙江北方文艺出版社有限公司 出版周期:半月 ISSN:1002-2708 CN:23-1111/Z 邮发代号:14-145 收录网站:知网 收稿方向:基础教育职业教育高等教育 收…

视频监控汇聚平台/算法中台/视频集中存储EasyCVR在Linux中开启硬件探测配置后,无法启动该如何解决?

智能视频监控/视频云存储/集中存储/视频汇聚平台EasyCVR具备视频融合汇聚能力,作为安防视频监控综合管理平台,它支持多协议接入、多格式视频流分发,视频监控综合管理平台EasyCVR支持海量视频汇聚管理,可应用在多样化的场景上&…

不会代码循环断言如何实现?只要6步!

对于使用jmeter工具完成接口测试的测试工程师而言。在工作中,或者在面试中,都会遇到一个问题—— “CSV文档做了一大笔测试数据后,怎么去校验这个结果呢?” 现在大部分测试工程师可能都是通过人工的方法去查看结果,十…

泛型深入理解

泛型的概述 泛型&#xff1a;是JDK5中引入的特性&#xff0c;可以在编译阶段约束操作的数据类型&#xff0c;并进行检查。 泛型的格式&#xff1a;<数据类型>; 注意&#xff1a;泛型只能支持引用数据类型。 集合体系的全部接口和实现类都是支持泛型的使用的。 泛型的…

金蝶报表二开

本案例描述&#xff1a; 折旧明细报表中加入字段&#xff1a;存放地点、成本中心部门、使用人组织三个字段。 参考社区案例&#xff1a;报表二次开发添加自定义字段的指导方案 步骤&#xff1a; 1、加入报表插件 继承原报表的类。重写BuilderReportSqlAndTempTable、GetRe…

一篇文章带你了解各个程序员接单平台,让你选择不再迷茫!!!

相信现在很多程序员都已经走上了或者准备走上网上接单这条路&#xff0c;但是目前市面上的接单平台可谓五花八门&#xff0c;对于各个平台的优缺点&#xff0c;不同的程序员该如何选择适合自己的接单平台&#xff0c;你又是否了解呢&#xff1f; 接下来就让小编用一篇文章来为…