Java 数据结构篇-实现二叉搜索树的核心方法

🔥博客主页: 【小扳_-CSDN博客】
❤感谢大家点赞👍收藏⭐评论✍
 

文章目录

        1.0 二叉搜索树的概述

        2.0 二叉搜索树的成员变量及其构造方法

        3.0 实现二叉树的核心接口

        3.1 实现二叉搜索树 - 获取值 get(int key)

        3.2 实现二叉搜索树 - 获取最小的关键字 min(BinaryNode node)

        3.3 实现二叉搜索树 - 获取最大的关键字 max(BinaryNode node)

        3.4 实现二叉搜索树 - 增、更新 put( int key, Object value)

        3.5 实现二叉搜索树 - 查找关键字的后驱节点 successor(int key)

        3.6 实现二叉搜索树 - 查找关键字的前驱节点 predecessor(int key)

        3.7 实现二叉搜索树 - 删除关键字节点 delete(int key)

        3.8 实现二叉搜索树 - 查找范围小于关键字的节点值 less(int key)

        3.9 实现二叉搜索树 - 查找范围大于关键字的节点值 greater(int key)

        4.0 实现二叉搜索树 - 查找范围大于 k1 且小于 k2 关键字的节点值 between(int k1, int k2)

        5.0 实现二叉搜索树核心方法的完整代码


        1.0 二叉搜索树的概述

        二叉搜索树是一种数据结构,用于存储数据并支持快速的插入、删除和搜索操作。它是一种树形结构。

        它具有以下特点:

                - 每个节点最多有两个子节点,分别称为左子节点和右子节点。

                - 对于每个节点,其左子节点的值小于该节点的值,右子节点的值大于该节点的值。

                - 中序遍历二叉搜索树可以得到有序的元素序列。

        由于其特性,二叉搜索树在插入、删除和搜索操作上具有较高的效率。在平均情况下,这些操作的时间复杂度为 O(log n),其中 n 为树中节点的数量。然而,如果树的结构不平衡,最坏情况下这些操作的时间复杂度可能会达到 O(n)。由于其高效的搜索特性,二叉搜索树常被用于实现关联数组和集合等数据结构。然而,为了避免树的结构不平衡导致性能下降,人们也发展了平衡二叉搜索树(如红黑树、AVL树)等变种。

        2.0 二叉搜索树的成员变量及其构造方法

        外部类成员变量有:根节点节点类(内部类)

        外部类构造方法:默认的构造方法,对外公开二叉搜索树的核心方法

        节点类的成员变量有:

                - key 关键字:相对比一般的二叉树,二叉搜索树可以明显提高增删查改的效率原因在于关键字,可以根据比较两个关键字的大小进行操作。

                - value 值:作用则为存放值。

                - left :链接左节点。

                - right:链接右节点。

        节点类的构造方法:

                带两个参数的构造方法:参数为 key 、value 

                带四个参数的构造方法:参数为 key 、value 、left 、right

代码如下:

public class BinaryTree {BinaryNode root = null;static class BinaryNode {int key;Object value;BinaryNode left;BinaryNode right;public BinaryNode(int kty, Object value) {this.key = kty;this.value = value;}public BinaryNode(int key, Object value, BinaryNode left, BinaryNode right) {this.key = key;this.value = value;this.left = left;this.right = right;}}}

        补充二叉搜索树在增、删、查、改的效率高的原因:

        二叉搜索树的高效性与其关键字的特性密切相关。二叉搜索树的关键特性是,对于每个节点,其左子节点的值小于该节点的值,右子节点的值大于该节点的值。这种特性使得在二叉搜索树中进行搜索、插入和删除操作时,可以通过比较关键字的大小来快速定位目标节点,从而实现高效的操作。在平均情况下,这些操作的时间复杂度为 O(log n),其中 n 为树中节点的数量。因此,关键字的有序性是二叉搜索树能够实现高效操作的关键原因之一。

        3.0 实现二叉树的核心接口

​
public interface BinarySearchTreeInterface {/***查找 key 对应的 value*/Object get(int key);/*** 查找最小关键字对应值*/Object min();/*** 查找最大关键字对应值*/Object max();/*** 存储关键字与对应值*/void put(int key, Object value);/*** 查找关键字的后驱*/Object successor(int key);/*** 查找关键字的前驱*/Object predecessor(int key);/*** 根据关键字删除*/Object delete(int key);
}​

        3.1 实现二叉搜索树 - 获取值 get(int key)

        实现思路为:从根节点开始,先判断当前的节点 p.key 与 key 进行比较,若 p.key > key,则向左子树下潜 p = p.left ;若 p.key < key ,则向右子树下潜 p = p.right ;若 p.key == key ,则找到到了关键字,返回该节点的值 p.value 。按这样的规则一直循环下去,直到 p == null 退出循环,则说明没有找到对应的节点,则返回 null 。

代码如下:

    @Overridepublic Object get(int key) {if (root == null) {return null;}BinaryNode p = root;while(p != null) {if (p.key > key) {p = p.left;}else if (p.key < key) {p = p.right;}else {return p.value;}}return null;}

        若 root 为 null ,则不需要再进行下去了,直接结束。

        3.2 实现二叉搜索树 - 获取最小的关键字 min(BinaryNode node)

        实现思路:在某一个树中,需要得到最小的关键字,由根据数据结构的特点,最小的关键字在数的最左边,简单来说:一直向左子树遍历下去,直到 p.left == null 时,则该 p 节点就是最小的关键字了。然后找到了最小的节点,返回该节点的值即可。

代码如下:

非递归实现:

    @Overridepublic Object min() {if (root == null) {return null;}BinaryNode p = root;while(p.left != null) {p = p.left;}return p.value;}//重载了一个方法,带参数的方法。public Object min(BinaryNode node) {if (node == null) {return null;}BinaryNode p = node;while (p.left != null) {p = p.left;}return p.value;}

递归实现:

    //使用递归实现找最小关键字public Object minRecursion() {return doMin(root);}private Object doMin(BinaryNode node) {if (node == null) {return null;}if (node.left == null) {return node.value;}return doMin(node.left);}

        

        3.3 实现二叉搜索树 - 获取最大的关键字 max(BinaryNode node)

        实现思路为:在某一个树中,需要得到最大的关键字,由根据数据结构的特点,最大的关键字在数的最右边,简单来说:一直向右子树遍历下去,直到 p.right == null 时,则该 p 节点就是最大的关键字了。然后找到了最大的节点,返回该节点的值即可。

代码如下:

非递归实现:

    @Overridepublic Object max() {if (root == null) {return null;}BinaryNode p = root;while(p.right != null) {p = p.right;}return p.value;}//重载了一个带参数的方法public Object max(BinaryNode node) {if (node == null) {return null;}BinaryNode p = node;while (p.right != null) {p = p.right;}return p.value;}

递归实现:

    //使用递归实现找最大关键字public Object maxRecursion() {return doMax(root);}private Object doMax(BinaryNode node) {if (node == null) {return null;}if (node.right == null) {return node.value;}return doMax(node.right);}

        3.4 实现二叉搜索树 - 增、更新 put( int key, Object value)

        实现思路为:在二叉搜索树中先试着查找是否存在与 key 对应的节点 p.key 。若找到了,则为更新该值 p.value = value 即可。若找不到,则需要新增该关键字节点

        具体来分析如何新增关键字,先定义 BinaryNode parent 、 BinaryNode p,p 指针在去比较 key 之前,先让 parent 指向 p 。最后循环结束后, p == null ,对于 parent 来说,此时正指着 p 节点的双亲节点。 接着创建一个新的节点,BinaryNode newNode = new BinaryNode(key, value) ,则此时还需要考虑的是,该新的节点该连接到 parent 的左孩子还是右孩子 ?需要比较 parent.key 与 newNode.key 的大小即可,若 parent.key > newNode.key,则链接到 parent.left 处;若 prent.key < newNode.key ,则连接到 parent.right 处。

代码如下:

    @Overridepublic void put(int key, Object value) {if (root == null) {root = new BinaryNode(key,value);return;}BinaryNode p = root;BinaryNode parent = null;while (p != null) {parent = p;if (p.key > key) {p = p.left;} else if (p.key < key) {p = p.right;}else {p.value = value;return;}}//该树没有该关键字,因此需要新建节点对象BinaryNode newNode = new BinaryNode(key,value);if (newNode.key < parent.key) {parent.left = newNode;}else {parent.right = newNode;}}

        3.5 实现二叉搜索树 - 查找关键字的后驱节点 successor(int key)

        具体实现思路为:先遍历找到该关键字的节点,若找不到,则返回 null ;若找到了,判断以下的两种情况,第一种情况:该节点有右子树,则该关键字的后驱为右子树的最小关键字;第二种情况:该节点没有右子树,则该关键字的后驱为从右向左而来的祖宗节点。最后返回该后驱节点的值 

代码如下:

    @Overridepublic Object successor(int key) {if (root == null) {return null;}//先找到该关键字节点BinaryNode p = root;BinaryNode sParent = null;while (p != null) {if (p.key > key) {sParent = p;p = p.left;} else if (p.key < key) {p = p.right;}else {break;}}//没有找到关键字的情况if (p == null) {return null;}//情况一:该节点存在右子树,则该后继为右子树的最小关键字if (p.right != null) {return min(p.right);}//情况二:该节点不存在右子树,那么该后继就需要到祖宗从右向左的节点if (sParent == null) {//可能不存在后继节点,比如最大关键字的节点就没有后继节点了return null;}return sParent.value;}

        3.6 实现二叉搜索树 - 查找关键字的前驱节点 predecessor(int key)

        具体实现思路为:先对该二叉树进行遍历寻找 key 的节点,若遍历结束还没找到,则返回 null ;若找到了,需要判断以下两种情况:

        第一种情况:该节点有左子树,则该前驱节点为该左子树的最大关键字节点。

        第二种情况:该节点没有左子树,则该前驱节点为从左向右而来的祖宗节点。

        最后返回该前驱节点的值。

代码如下:

    @Overridepublic Object predecessor(int key) {if (root == null) {return null;}BinaryNode p = root;BinaryNode sParent = null;while (p != null) {if (p.key > key) {p = p.left;} else if (p.key < key) {sParent = p;p = p.right;}else {break;}}if (p == null) {return null;}//情况一:存在左子树,则该前任就为左子树的最大关键字节点if (p.left != null) {return max(p.left);}//情况二:不存在左子树,则该前任为从祖宗自左向右而来的节点if (sParent == null) {return null;}return sParent.value;}

        3.7 实现二叉搜索树 - 删除关键字节点 delete(int key)

        具体实现思路为:先遍历二叉树,查找该关键字节点。若遍历结束了还没有找到,则返回 null ;若找到了,则需要以下四种情况:

        第一种情况:找到该删除的节点只有左子树。则直接让该左子树 "托付" 给删除节点的双亲节点,这就删除了该节点了。至于左子树是链接到双亲节点的左边还有右边这个问题,根据该数据结构的特点,由该删除节点来决定。若删除的节点之前是链接该双亲节点的左边,则左子树也是链接到该双亲节点的左边;若删除的节点之前是链接该双亲节点的右边,则左子树也是链接到该双亲节点的右边。

        第二种情况:找到该删除的节点只有右子树。则直接让该右子树 "托付" 给删除节点的双亲节点,这就删除了该节点了。至于右子树是链接到双亲节点的左边还有右边这个问题,根据该数据结构的特点,由该删除节点来决定。若删除的节点之前是链接该双亲节点的左边,则右子树也是链接到该双亲节点的左边;若删除的节点之前是链接该双亲节点的右边,则右子树也是链接到该双亲节点的右边。

        第三种情况:找到该删除节点都没有左右子树。该情况可以归并到以上两种情况的任意一种处理均可。

        第四种情况:找到该删除节点都有左右子树。分两步:第一步,先找后继节点来替换删除节点,找该后继节点直接到删除节点的右子树中找最小的关键字节点即可。第二步,需要先将后继节点的右子树处理好,需要将该右子树交给替换节点的双亲节点链接。还需要判断两种情况:第一种情况,若删除节点与替换节点是紧挨着的,对替换节点的右子树无需要求,只对左子树重新赋值;若删除节点与替换节点不是紧挨着的关系,对替换节点的左右子树都要重新赋值。

代码如下:

    @Overridepublic Object delete(int key) {if (root == null) {return null;}BinaryNode p = root;BinaryNode parent = null;while (p != null) {if (p.key > key) {parent = p;p = p.left;} else if (p.key < key) {parent = p;p = p.right;}else {break;}}//没有找到该关键字的节点if (p == null) {return null;}//情况一、二、三:只有左子树或者右子树或者都没有if (p.right == null) {shift(parent,p,p.left);} else if (p.left == null) {shift(parent,p,p.right);}else {//情况四:有左右子树//替换节点采用删除节点的后继节点//先看被删的节点与替换的节点是否为紧挨在一起BinaryNode s = p.right;BinaryNode sParent = p;while (s.left != null) {sParent = s;s = s.left;}if (sParent != p) {//说明没有紧挨在一起,则需要将替换节点的右子树进行处理shift(sParent,s,s.right);s.right = p.right;}shift(parent,p,s);s.left = p.left;}return p.value;}private void shift(BinaryNode parent, BinaryNode delete, BinaryNode next) {if (parent == null) {root = next;} else if (parent.left == delete) {parent.left = next;}else if (parent.right == delete){parent.right = next;}}

        为了方便,将删除节点与替换节点之间的替换操作单独成一个方法出来。

        递归实现删除关键字 key 节点,同理,也是细分为以上描述的四种情况。

代码如下:

    //使用递归实现删除关键字节点public BinaryNode deleteRecursion(BinaryNode node , int key) {if (node == null) {return null;}if (node.key > key) {node.left = deleteRecursion(node.left,key);return node;} else if (node.key < key) {node.right = deleteRecursion(node.right,key);return node;}else {if (node.right == null) {return node.left;} else if (node.left == null) {return node.right;}else {BinaryNode s = node.right;while (s.left != null) {s = s.left;}s.right = deleteRecursion(node.right,s.key);s.left = node.left;return s;}}}

        3.8 实现二叉搜索树 - 查找范围小于关键字的节点值 less(int key)

        具体实现思路为:利用中序遍历,来遍历每一个节点的 key ,若小于 key 的节点,直接放到数组容器中;若大于 key 的,可以直接退出循环。最后返回该数组容器即可

代码如下:

    //找 < key 的所有 valuepublic List<Object> less(int key) {if (root == null) {return null;}ArrayList<Object> result = new ArrayList<>();BinaryNode p = root;Stack<BinaryNode> stack = new Stack<>();while (p != null || !stack.isEmpty()) {if (p != null) {stack.push(p);p = p.left;}else {BinaryNode pop = stack.pop();if (pop.key < key) {result.add(pop.value);}else {break;}p = pop.right;}}return result;}

        3.9 实现二叉搜索树 - 查找范围大于关键字的节点值 greater(int key)

        具体实现思路:利用中序遍历,来遍历每一个节点的 key ,若大于 key 的节点,直接放到数组容器中。

代码如下:

    //找 > key 的所有 valuepublic List<Object> greater(int key) {if (root == null) {return null;}ArrayList<Object> result = new ArrayList<>();Stack<BinaryNode> stack = new Stack<>();BinaryNode p = root;while (p != null || !stack.isEmpty()) {if (p != null) {stack.push(p);p = p.left;}else {BinaryNode pop = stack.pop();if (pop.key > key) {result.add(pop.value);}p = pop.right;}}return result;}

该方法的改进:遍历方向进行调整,先从右子树开始,再访问根节点,最后才到左子树。因此只要小于 key 的关键字节点,直接退出循环

代码如下:

    //改进思路:遍历方向进行调整,先从右子树开始,再访问根节点,最后才到左子树public List<Object> greater1(int key) {if (root == null) {return null;}ArrayList<Object> result = new ArrayList<>();Stack<BinaryNode> stack = new Stack<>();BinaryNode p = root;while (p != null || !stack.isEmpty()) {if (p != null ) {stack.push(p);p = p.right;}else {BinaryNode pop = stack.pop();if (pop.key > key) {result.add(pop.value);}else {break;}p = pop.left;}}return result;}

        4.0 实现二叉搜索树 - 查找范围大于 k1 且小于 k2 关键字的节点值 between(int k1, int k2)

        实现思路跟以上的思路没有什么区别,唯一需要注意的是,当前节点的 key > k2 则可以退出循环了。

代码如下:

//找到 >= k1 且 =< k2 的所有valuepublic List<Object> between(int k1, int k2) {if (root == null) {return null;}ArrayList<Object> result = new ArrayList<>();Stack<BinaryNode> stack = new Stack<>();BinaryNode p = root;while(p != null || !stack.isEmpty()) {if (p != null) {stack.push(p);p = p.left;}else {BinaryNode pop = stack.pop();if (pop.key >= k1 && pop.key <= k2) {result.add(pop.value);} else if (pop.key > k2) {break;}p = pop.right;}}return result;}

        5.0 实现二叉搜索树核心方法的完整代码

实现接口代码:

import java.util.ArrayList;import java.util.List;
import java.util.Stack;public class BinaryTree implements BinarySearchTreeInterface{BinaryNode root = null;static class BinaryNode {int key;Object value;BinaryNode left;BinaryNode right;public BinaryNode(int kty, Object value) {this.key = kty;this.value = value;}public BinaryNode(int key, Object value, BinaryNode left, BinaryNode right) {this.key = key;this.value = value;this.left = left;this.right = right;}}@Overridepublic Object get(int key) {if (root == null) {return null;}BinaryNode p = root;while(p != null) {if (p.key > key) {p = p.left;}else if (p.key < key) {p = p.right;}else {return p.value;}}return null;}@Overridepublic Object min() {if (root == null) {return null;}BinaryNode p = root;while(p.left != null) {p = p.left;}return p.value;}public Object min(BinaryNode node) {if (node == null) {return null;}BinaryNode p = node;while (p.left != null) {p = p.left;}return p.value;}//使用递归实现找最小关键字public Object minRecursion() {return doMin(root);}private Object doMin(BinaryNode node) {if (node == null) {return null;}if (node.left == null) {return node.value;}return doMin(node.left);}@Overridepublic Object max() {if (root == null) {return null;}BinaryNode p = root;while(p.right != null) {p = p.right;}return p.value;}public Object max(BinaryNode node) {if (node == null) {return null;}BinaryNode p = node;while (p.right != null) {p = p.right;}return p.value;}//使用递归实现找最大关键字public Object maxRecursion() {return doMax(root);}private Object doMax(BinaryNode node) {if (node == null) {return null;}if (node.right == null) {return node.value;}return doMax(node.right);}@Overridepublic void put(int key, Object value) {if (root == null) {root = new BinaryNode(key,value);return;}BinaryNode p = root;BinaryNode parent = null;while (p != null) {parent = p;if (p.key > key) {p = p.left;} else if (p.key < key) {p = p.right;}else {p.value = value;return;}}//该树没有该关键字,因此需要新建节点对象BinaryNode newNode = new BinaryNode(key,value);if (newNode.key < parent.key) {parent.left = newNode;}else {parent.right = newNode;}}@Overridepublic Object successor(int key) {if (root == null) {return null;}//先找到该关键字节点BinaryNode p = root;BinaryNode sParent = null;while (p != null) {if (p.key > key) {sParent = p;p = p.left;} else if (p.key < key) {p = p.right;}else {break;}}//没有找到关键字的情况if (p == null) {return null;}//情况一:该节点存在右子树,则该后继为右子树的最小关键字if (p.right != null) {return min(p.right);}//情况二:该节点不存在右子树,那么该后继就需要到祖宗从右向左的节点if (sParent == null) {//可能不存在后继节点,比如最大关键字的节点就没有后继节点了return null;}return sParent.value;}@Overridepublic Object predecessor(int key) {if (root == null) {return null;}BinaryNode p = root;BinaryNode sParent = null;while (p != null) {if (p.key > key) {p = p.left;} else if (p.key < key) {sParent = p;p = p.right;}else {break;}}if (p == null) {return null;}//情况一:存在左子树,则该前任就为左子树的最大关键字节点if (p.left != null) {return max(p.left);}//情况二:不存在左子树,则该前任为从祖宗自左向右而来的节点if (sParent == null) {return null;}return sParent.value;}@Overridepublic Object delete(int key) {if (root == null) {return null;}BinaryNode p = root;BinaryNode parent = null;while (p != null) {if (p.key > key) {parent = p;p = p.left;} else if (p.key < key) {parent = p;p = p.right;}else {break;}}//没有找到该关键字的节点if (p == null) {return null;}//情况一、二、三:只有左子树或者右子树或者都没有if (p.right == null) {shift(parent,p,p.left);} else if (p.left == null) {shift(parent,p,p.right);}else {//情况四:有左右子树//替换节点采用删除节点的后继节点//先看被删的节点与替换的节点是否为紧挨在一起BinaryNode s = p.right;BinaryNode sParent = p;while (s.left != null) {sParent = s;s = s.left;}if (sParent != p) {//说明没有紧挨在一起,则需要将替换节点的右子树进行处理shift(sParent,s,s.right);s.right = p.right;}shift(parent,p,s);s.left = p.left;}return p.value;}private void shift(BinaryNode parent, BinaryNode delete, BinaryNode next) {if (parent == null) {root = next;} else if (parent.left == delete) {parent.left = next;}else if (parent.right == delete){parent.right = next;}}//使用递归实现删除关键字节点public BinaryNode deleteRecursion(BinaryNode node , int key) {if (node == null) {return null;}if (node.key > key) {node.left = deleteRecursion(node.left,key);return node;} else if (node.key < key) {node.right = deleteRecursion(node.right,key);return node;}else {if (node.right == null) {return node.left;} else if (node.left == null) {return node.right;}else {BinaryNode s = node.right;while (s.left != null) {s = s.left;}s.right = deleteRecursion(node.right,s.key);s.left = node.left;return s;}}}//找 < key 的所有 valuepublic List<Object> less(int key) {if (root == null) {return null;}ArrayList<Object> result = new ArrayList<>();BinaryNode p = root;Stack<BinaryNode> stack = new Stack<>();while (p != null || !stack.isEmpty()) {if (p != null) {stack.push(p);p = p.left;}else {BinaryNode pop = stack.pop();if (pop.key < key) {result.add(pop.value);}else {break;}p = pop.right;}}return result;}//找 > key 的所有 valuepublic List<Object> greater(int key) {if (root == null) {return null;}ArrayList<Object> result = new ArrayList<>();Stack<BinaryNode> stack = new Stack<>();BinaryNode p = root;while (p != null || !stack.isEmpty()) {if (p != null) {stack.push(p);p = p.left;}else {BinaryNode pop = stack.pop();if (pop.key > key) {result.add(pop.value);}p = pop.right;}}return result;}//改进思路:遍历方向进行调整,先从右子树开始,再访问根节点,最后才到左子树public List<Object> greater1(int key) {if (root == null) {return null;}ArrayList<Object> result = new ArrayList<>();Stack<BinaryNode> stack = new Stack<>();BinaryNode p = root;while (p != null || !stack.isEmpty()) {if (p != null ) {stack.push(p);p = p.right;}else {BinaryNode pop = stack.pop();if (pop.key > key) {result.add(pop.value);}else {break;}p = pop.left;}}return result;}//找到 >= k1 且 =< k2 的所有valuepublic List<Object> between(int k1, int k2) {if (root == null) {return null;}ArrayList<Object> result = new ArrayList<>();Stack<BinaryNode> stack = new Stack<>();BinaryNode p = root;while(p != null || !stack.isEmpty()) {if (p != null) {stack.push(p);p = p.left;}else {BinaryNode pop = stack.pop();if (pop.key >= k1 && pop.key <= k2) {result.add(pop.value);} else if (pop.key > k2) {break;}p = pop.right;}}return result;}}

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/286784.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Floyd求最短路(Floyd算法)

参考&#xff1a;约会怎么走到目的地最近呢&#xff1f;一文讲清所有最短路算法问题-CSDN博客 有4个城市8条路&#xff0c;公路上的数字表示这条公路的长短&#xff0c;并且路是单向的&#xff0c;现在要求我们求出任意两个城市之间的最短路程&#xff0c;也就是求任意两个点之…

Springboot项目启动前,使用GUI做初始化配置页面并将Log4j2的日志实时显示在GUI上

Springboot项目启动前&#xff0c;使用GUI做初始化配置页面并将Log4j2的日志实时显示在GUI上 效果预览 Mac Os效果图 Windows 10 效果图 需求分析 做这样的一个功能并不适用于所有系统&#xff0c;主要用于交付给用户的产品&#xff0c;这样方便客户自行维护。传统的服务一般…

初冬天气变化大,长辈身上的这些小毛病千万不能轻视

心率、血氧、肺功能&#xff0c;甚至是一次次不起眼的咳嗽&#xff0c;背后都可能藏着健康问题。但是我们可以利用好手表上的健康检测功能&#xff0c;提前获知健康数据的变化&#xff0c;有的放矢&#xff0c;科学应对身体的不适&#xff0c;度过一个有准备的温暖冬天&#xf…

SoapUI、Jmeter、Postman三种接口测试工具的比较分析!

前段时间忙于接口测试&#xff0c;也看了几款接口测试工具&#xff0c;简单从几个角度做了个比较&#xff0c;拿出来与诸位分享一下。本文从多个方面对接口测试的三款常用工具进行比较分析&#xff0c;以便于在特定的情况下选择最合适的工具&#xff0c;或者使用自己编写的工具…

55.3k star!开源算法教程,附带动画图解,学习算法不再苦恼!

本文小编为大家分享一款开源算法图解教程项目&#xff01;学习算法更加通俗易懂&#xff0c;生动有趣&#xff01;这本开源的算法书是hello-algo&#xff0c;中文就叫Hello算法。 简介 《Hello 算法》是一本开源免费、新手友好的数据结构与算法入门教程&#xff0c;支持 Jav…

CogVLM与CogAgent:开源视觉语言模型的新里程碑

引言 随着机器学习的快速发展&#xff0c;视觉语言模型&#xff08;VLM&#xff09;的研究取得了显著的进步。今天&#xff0c;我们很高兴介绍两款强大的开源视觉语言模型&#xff1a;CogVLM和CogAgent。这两款模型在图像理解和多轮对话等领域表现出色&#xff0c;为人工智能的…

你知道在MyBatis中传参的#{}和${}的区别吗???

首先我们先将其区别列举出来&#xff1a; 首先演示sql注入&#xff1a; 基于上两篇博客的准备工作&#xff0c;继续开发&#xff1a;MyBatis的删除、修改、插入操作&#xff01;&#xff01;&#xff01;-CSDN博客 #{}的使用 UserMapper.java: User testLogin(User user); U…

gets函数的简单介绍

gets函数原型&#xff1a; 函数返回类型为字符串的地址char* gets函数特点&#xff1a; 1: 接收换行符之前的所有字符&#xff0c;直到遇到\n或\0为止 所以有时运用scanf不能输入&#xff08;原因&#xff1a;scanf遇到空格停止&#xff0c;而gets函数遇到空格不停止&#x…

金三银四精选面试题系列

Java中有哪几种方式来创建线程执行任务&#xff1f; 1. 继承Thread类 public class ZhouyuThread extends Thread{public static void main(String[] args) {ZhouyuThread thread new ZhouyuThread();thread.start();}Overridepublic void run() {System.out.println("h…

如何选择数字化转型顾问

在进行数字化转型时&#xff0c;第一步也是最重要的一步是深刻了解你的业务需求&#xff0c;这一基本流程涉及对企业的目标、挑战和抱负进行全面分析。必须提出关键问题&#xff1a;你通过数字化转型寻求哪些具体结果?主要目标是优化运营效率、提升客户体验&#xff0c;还是使…

连接SSH报错 / 连接容器SSH

连接SSH报错 / 连接容器SSH 前言被控端主控端连接失败 前言 本文介绍如何通过SSH方式远程连接Linux被控端&#xff0c;并介绍如何解决连接失败问题。 此方法同样适用于SSH连接Docker容器。 被控端 被控端一般为Linux&#xff0c;默认已安装ssh&#xff0c;但需要手动安装ope…

嵌入式中串口输入

学习目标 掌握串口初始化流程掌握串口接收逻辑了解中断接收逻辑熟练掌握串口开发流程学习内容 需求 串口接收PC机发送的数据。 串口数据接收 串口初始化 static void USART_config() {uint32_t usartx_tx_rcu = RCU_GPIOA;uint32_t usartx_tx_port = GPIOA;uint32_t usartx…