智能优化算法应用:基于类电磁机制算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于类电磁机制算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于类电磁机制算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.类电磁机制算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用类电磁机制算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.类电磁机制算法

类电磁机制算法原理请参考:https://blog.csdn.net/u011835903/article/details/120902972
类电磁机制算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

类电磁机制算法参数如下:

%% 设定类电磁机制优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明类电磁机制算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/287010.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

鸿蒙系统(HarmonyOS)之方舟框架(ArkUI)介绍

鸿蒙开发官网:HarmonyOS应用开发官网 - 华为HarmonyOS打造全场景新服务 方舟开发框架(简称:ArkUI),是一套构建HarmonyOS应用界面的UI开发框架,它提供了极简的UI语法与包括UI组件、动画机制、事件交互等在内…

NLP论文阅读记录 - AAAI 23 | 02 SUMREN:总结有关新闻事件的报道演讲

文章目录 前言0、论文摘要一、Introduction1.1目标问题1.2相关的尝试1.3本文贡献 二.相关工作2.1新闻摘要2.2 以查询为中心的摘要2.3 新闻归因 三.本文方法3.1 SumREN 基准3.1.1基准建设3.1.2 统计3.1.3 银牌训练数据生成 3.2 Models3.2.1以查询为中心的摘要基线3.2.2 基于管道…

leetcode---76. 最小覆盖子串 [C++/滑动窗口+哈希表]

原题:76. 最小覆盖子串 - 力扣(LeetCode) 题目解析: 此题在这道题的基础上进行理解会更简单 leetcode --- 30. 串联所有单词的子串[C 滑动窗口/双指针]-CSDN博客 本题要求在s字符串中找到含有t字符串所有字符的最短子串。 也就是…

Python给exe添加以管理员运行的属性

需求 有些应用每次启动都需要用管理员权限运行,比如Python注入dll时,编辑器或cmd就需要以管理员权限运行,不然注入就会失败。 这篇文章用编程怎么修改配置实现打开某个软件都是使用管理员运行,就不用每次都右键点击以管理员身份…

STM32与Freertos入门(六)队列

1、队列介绍 队列是FreeRTOS提供的一种重要的通信机制,用于在任务之间传递数据。 FreeRTOS队列是一种先进先出(FIFO)的数据结构,用于在任务之间传递消息或数据项。它允许一个任务将数据项发送到队列,而另一个任务则可…

自己动手写编译器:语法解析的基本原理

在前面系列章节中我们完成了词法解析。词法解析的基本任务就是判断给定字符串是否符合特定规则,如果符合那么就给这个字符串分配一个标签(token)。词法解析完成后接下来的工作就要分配给语法解析,后者的任务就是判断一系列标签的组合是否符合特定规范。 …

爬虫中scrapy模块的概念作用和工作流程

scrapy的概念和流程 学习目标: 了解 scrapy的概念了解 scrapy框架的作用掌握 scrapy框架的运行流程掌握 scrapy中每个模块的作用 1. scrapy的概念 Scrapy是一个Python编写的开源网络爬虫框架。它是一个被设计用于爬取网络数据、提取结构性数据的框架。 Scrapy 使…

面试算法56:二叉搜索树中两个节点的值之和

题目 给定一棵二叉搜索树和一个值k,请判断该二叉搜索树中是否存在值之和等于k的两个节点。假设二叉搜索树中节点的值均唯一。例如,在如图8.12所示的二叉搜索树中,存在值之和等于12的两个节点(节点5和节点7)&#xff0…

乔拓云平台:从小程序到多平台,全面满足需求

随着移动互联网的快速发展,小程序作为一种轻量级的应用程序,逐渐成为了企业和个人进行营销和提供服务的重要工具。然而,对于许多非技术用户来说,自行开发小程序往往面临较高的门槛和成本。为了解决这一问题,乔拓云第三…

数据可视化---饼图、环形图、雷达图

类别内容导航机器学习机器学习算法应用场景与评价指标机器学习算法—分类机器学习算法—回归机器学习算法—聚类机器学习算法—异常检测机器学习算法—时间序列数据可视化数据可视化—折线图数据可视化—箱线图数据可视化—柱状图数据可视化—饼图、环形图、雷达图统计学检验箱…

ViewBinding与DataBinding(视图绑定与数据双向绑定)

前言:心中纵是有所盼 严寒没有减 风很冷 我的手已渐蓝 前言 控件查找对于Android开发来说也是一部血泪史,一直为更有效的方案进行了多种方案的研究和探讨。findViewById() 过于繁琐,强制转换不安全;butterkniife 会存在众多臃肿的…

期货高低板(期货价格飘升,市场掀起高低潮流)

什么是期货高低板? 期货是由交易所统一交易的标准化合约,商品的价格是通过供求关系来决定的。高低板则是期货交易中的常见现象,它表示了在交易过程中,价格波动超过了可设定的最高或最低价,于是交易系统便会出现高板或…