yolov5障碍物识别-雪糕筒识别(代码+教程)

简介

这是一个检测交通锥并识别颜色的项目。我使用 yolov5 来训练和检测视锥细胞。此外,我使用 k 均值来确定主色,以对锥体颜色进行分类。目前,支持的颜色为红色、黄色、绿色和蓝色。其他颜色被归类为未知。

在这里插入图片描述

数据集和注释

我使用了一个自收集的锥体数据集,其中包含 303 张锥体图像。这不是一个完美的做法,因为它是一个很小的数据集。我还需要自己注释图像。在这里,我使用了一个在线注释网站 Roboflow,它提供注释、预处理和增强等服务。但是,它对免费用户有 1,000 个源图像和 5,000 个生成图像的限制。

model
├── 锥体检测:Yolov5S
└── 颜色识别:主色(k-means)
用法
如果您有兴趣,可以尝试 colab 中的代码。

在这里插入图片描述

训练

# display images
from PIL import Image
import globfor imageName in glob.glob('/content/yolov5/images/*.jpg'):basewidth = 640img = Image.open(imageName)wpercent = (basewidth/float(img.size[0]))hsize = int((float(img.size[1])*float(wpercent)))img = img.resize((basewidth,hsize), Image.NEAREST)img = img.convert("RGB")img.save(imageName)
  • 如果您有带注释的数据集,则可以直接使用 train.ipynb 在 Colab 中打开项目。

  • 使用 Colab 进行训练和预测: Colab 是一个基于云的 Jupyter 笔记本服务,能够在云端运行代码。通过提供的 Colab
    链接,你可以直接在浏览器中打开并运行代码,这对于快速尝试和理解项目非常方便。
    在这里插入图片描述

  • 项目中的注意事项: 数据集大小: 作者使用了一个包含 303
    张图像的自定义数据集,但指出这并不是一个理想的实践,因为数据集规模较小。在实际应用中,使用更大规模的数据集通常会有助于提高模型的性能。

  • 在线标注服务: 使用 Roboflow
    进行图像标注,该服务提供了标注、预处理和增强等功能。然而,对于免费用户,有一些使用限制,包括最大处理图像数量和生成图像数量。

%%writetemplate /content/yolov5/models/custom_yolov5s.yaml# parameters
nc: {num_classes}  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple# anchors
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 backbone
backbone:# [from, number, module, args][[-1, 1, Focus, [64, 3]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 9, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 1, SPP, [1024, [5, 9, 13]]],[-1, 3, C3, [1024, False]],  # 9]# YOLOv5 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]
  • 颜色分类: 采用 k-means 算法确定主导颜色,并将交通锥分为红、黄、绿和蓝等颜色。其他颜色被分类为未知。
    在这里插入图片描述

  • 推荐的下一步: 如果你对该项目感兴趣,可以进一步探索以下方面:

  • 数据增强: 在数据集上应用更多的数据增强技术,以提高模型的泛化能力。

  • 模型调优: 尝试使用更大的 YOLOv5 模型(例如 yolov5m、yolov5l 或
    yolov5x)进行训练,看看是否能够改善检测性能。

  • 更大的数据集: 如果可能的话,考虑收集更大规模的数据集,以进一步提高模型的准确性。
    在这里插入图片描述

视频预测

预测:
使用 predict.ipynb 进行锥体检测。 在 pycharm 中打开

# use the best weights!
%cd /content/yolov5/
!python detect.py --weights weights/best.pt --conf 0.6 --source videos/cone_video.mp4

注意:需要使用作者在 model 文件夹中训练的权重,并且有一些自定义的 YOLOv5 文件在 utils 文件夹中。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/287065.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

定位咨询:企业市场竞争中的定海神针

什么是定位咨询?定位咨询能给企业带来什么帮助?在现代市场的激烈竞争中,定位咨询不仅是企业区分自己的重要工具,更是它们赢得市场份额的关键。以下是定位咨询的定义和几个核心方面,笔者将列举具体案例说明其重要性和实用性。 定位咨询的简单…

【JUC】三十一、AQS源码

📕前置笔记:【AQS核心概念与核心类】 文章目录 1、ReentrantLock与AQS类的联系2、lock方法3、acquire方法4、源码分析Demo背景案例5、tryAcquire方法6、addWaiter方法7、acquireQueued方法8、unlock方法9、cancelAcquire方法 AQS是JUC的基石,…

自动化测试流程(超详细整理)

最近很多小伙伴问我自动化测试到底该怎么做?流程是什么样的?在每个阶段都需要注意什么?本文也就主要从自动化测试的基本流程入手,对面试自动化测试工程师的同学会有不少帮助。对于在职的朋友,也可以参考此流程&#xf…

15 使用v-model绑定单选框

概述 使用v-model绑定单选框也比较常见,比如性别,要么是男,要么是女。比如单选题,给出多个选择,但是只能选择其中的一个。 在本节课中,我们演示一下这两种常见的用法。 基本用法 我们创建src/component…

继电器的工作原理及驱动电路

继电器是具有隔离功能的自动开关元件,广泛应用于遥控、遥测、通讯、自动控制、机电一体化及电力电了设备中,是最重要的控制元件之一。继电器实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。…

高级桌面编程(二)

一、前言 文章的续作前文是: 高级桌面编程(一)-CSDN博客https://blog.csdn.net/qq_71897293/article/details/135072204?spm1001.2014.3001.5502 二、自定义控件 1创建自定义控件,如下图所示: 2 在创建的页面可以…

葡萄酒的主要区别只在于葡萄本身吗?

谈到葡萄酒,许多人认为选择最喜欢的葡萄酒只是简单地挑选一种颜色:红色或白色。红色和白色的区别是选择葡萄酒的一个很好的起点,但这仅仅是一个起点。要真正享受葡萄酒的体验,你应该深入了解自己。 如果你已经知道你喜欢白葡萄酒,…

25 redis 中 cluster 集群的工作模式

前言 我们这里首先来看 redis 这边实现比较复杂的 cluster集群模式 整个 cluster集群 中会包含多对 MasterSlave 的组合, 然后这多对 MasterSlave 来分解 16384 个 slot 然后 客户端这边 set, get 的时候, 先根据 key 计算对应存储的 slot, 然后 服务器这边响应 MOVED 目标…

飞速(FS)100G ZR4 光模块80km长距离传输

如今,100G QSFP28光模块已经被广泛部署在100m到40km的范围内。然而,传统的100G QSFP28模块面临一个挑战,因为它们的设计仅限于不超过40km的距离。超出此范围,色散、光衰减等问题就会增加,导致信噪比(SNR&am…

【C语言】自定义类型:结构体深入解析(一)

🌈write in front :🔍个人主页 : 啊森要自信的主页 ✏️真正相信奇迹的家伙,本身和奇迹一样了不起啊! 欢迎大家关注🔍点赞👍收藏⭐️留言📝>希望看完我的文章对你有小小的帮助&am…

Sharding-Jdbc(5):Sharding-Jdbc通过配置文件形式配置分表

1 项目目录 2 配置maven <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache…

LeetCode Hot100 51.N皇后

题目&#xff1a; 按照国际象棋的规则&#xff0c;皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。 n 皇后问题 研究的是如何将 n 个皇后放置在 nn 的棋盘上&#xff0c;并且使皇后彼此之间不能相互攻击。 给你一个整数 n &#xff0c;返回所有不同的 n 皇后问题 的…