Opencv实验合集——实验四:图片融合

1.概念

图像融合是将两个或多个图像结合在一起,创建一个新的图像的过程。这个过程的目标通常是通过合并图像的信息来获得比单个图像更全面、更有信息量的结果。图像融合可以在许多领域中应用,包括计算机视觉、遥感、医学图像处理等。

融合的方法有很多:

  1. 加法融合(Additive Fusion): 将每个图像的对应像素相加。这种方法通常用于合并具有相似亮度的图像,例如红外图像和可见光图像。

  2. 权重融合(Weighted Fusion): 对每个图像分配一个权重,然后通过加权和的方式将它们结合在一起。权重可以根据图像的特性动态调整,以获得最佳效果。

  3. 最大值融合(Max Fusion): 对于每个像素,选择输入图像中具有最大值的像素。这种方法通常用于图像分割和目标检测。

  4. 最小值融合(Min Fusion): 对于每个像素,选择输入图像中具有最小值的像素。这种方法通常用于处理深度信息。

  5. 平均融合(Average Fusion): 将每个图像的对应像素取平均值。这种方法可用于平滑噪声或减小图像中的不确定性。

  6. 梯度域融合(Gradient Domain Fusion): 考虑图像的梯度信息,以确保融合的图像在边缘处更加平滑。这在图像合成时常用,例如在图像编辑中。

  7. 无缝克隆(Seamless Cloning): 将源图像的一部分融合到目标图像中,使得融合边缘平滑且无缝。这通常涉及到掩码的使用,以确定源图像的哪些区域应该被融合。

本次实验主要进行无缝克隆融合

2.有关的函数方法

cv2.seamlessClone(src, dst, mask, center, flags)

  • src:源图像,即希望融合到目标图像上的图像。
  • dst:目标图像,即希望将源图像融合到的图像。
  • mask:掩码图像,指定了源图像中哪些区域应该被融合。掩码图像必须是单通道的、与源图像尺寸相同的灰度图像。通常,白色区域表示要融合的部分,黑色区域表示不融合的部分。
  • center:一个二元组 (x, y),表示源图像在目标图像中的放置位置。
  • flags:一个标志参数,控制克隆的方式。

flags主要分为三种克隆方式:

1.cv2.NORMAL_CLONE

这种克隆方式表示进行常规的图像克隆,即将源图像的一部分融合到目标图像上,使得融合边缘平滑且无缝。在这种克隆方式下,函数会尽可能地保持源图像和目标图像之间的一致性,以使得融合后的图像看起来更加自然。该方法对于一般的图像融合任务通常是合适的选择。

2.cv2.MIXED_CLONE

混合克隆在处理具有半透明区域的图像时效果更好,因为它考虑了源图像的透明度信息。在混合克隆中,源图像的每个像素都以一种混合的方式与目标图像对应位置的像素相结合。这个混合考虑了源图像中像素的颜色、透明度以及目标图像中对应位置的像素颜色。这种方法使得融合的边缘更加平滑,可以更好地处理半透明和半不透明的图像区域。

3.cv2.MONOCHROME_TRANSFER

用于指定单色传输的方式。单色传输主要用于处理单通道图像的克隆,例如灰度图像。在单色传输中,源图像的单通道信息(例如亮度)被传输到目标图像的相应位置。这种方式通常用于确保源图像的强度信息在融合后得到保留。当使用到灰色图像(三通道)的时候,可以优先考虑此克隆方式

 注意:此方法只接受三通道的图片


示例代码: 

import cv2
import numpy as npim = cv2.imdecode(np.fromfile(r'C:\Users\xiaoou\Desktop\picture/logo.jpg',dtype=np.uint8), cv2.IMREAD_COLOR)
obj = cv2.imdecode(np.fromfile(r'C:\Users\xiaoou\Desktop\picture/baicaoshi.png',dtype=np.uint8), cv2.IMREAD_COLOR)
im = cv2.resize(im,(516,516))
obj = cv2.resize(obj,(256,64))
mask = 255 * np.ones(obj.shape,obj.dtype)#掩码,表示所有位置都可以被融合
width, height, channel = im.shape
center = (int(height/2), int(width/2))
#正常克隆方式
normal_clone = cv2.seamlessClone(obj,im,mask,center,cv2.NORMAL_CLONE)
cv2.imshow('normal_clone',normal_clone)
cv2.waitKey(0)#混合克隆方式
mix_clone = cv2.seamlessClone(obj,im,mask,center,cv2.MIXED_CLONE)
cv2.imshow('mix_clone',mix_clone)
cv2.waitKey(0)im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
obj = cv2.cvtColor(obj, cv2.COLOR_BGR2GRAY)
im = cv2.merge((im, im, im))
obj = cv2.merge((obj, obj, obj))#将多个单通道的图像合并成一个多通道的图像#单色混合方式
MONO_clone = cv2.seamlessClone(obj,im,mask,center,cv2.MONOCHROME_TRANSFER)
cv2.imshow('MONO_clone',MONO_clone)
cv2.waitKey(0)

效果演示:

 

 

个人认为第二种方法较好,考虑的方面较多,今天这个实验可能相对来说限制较大,因为需要输入融合图像的中心位置,对于很多情况都是很难知道真正融合的位置的中心位置。 

本次实验展示了图像融合(图像克隆)功能,官方文档请看OpenCV: OpenCV Tutorials

如有错误或遗漏,希望小伙伴批评指正!!!! 

希望这篇博客对你有帮助!!!!

 实验三:Opencv实验合集——实验三:背景减除-CSDN博客

 实验四:Opencv实验合集——实验五:高动态范围-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/287301.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解决win10下强制设置web浏览器为microsoft edge的方法

目录 问题场景实现方法禁止edge默认选项设置默认浏览器 反思 问题场景 因为一些特殊的原因,我需要第二个浏览器,我的第一个浏览器是google的chrome浏览器,所以我选择的是windows的默认浏览器,就是microsoft edge浏览器&#xff0…

React和umi搭建项目的操作步骤

​​​​​​一、react脚手架新建项目 (1.1)、命令行 前提:react ES2015,nodejs v8 npx create-react-app myReactName //2022年v16以下版本 myReactName(自定义项目名) react中文官网,快速上手:react中文官网 react框架,…

ios备忘录怎么导入华为 方法介绍

作为一个常常需要在不同设备间切换的人,我深知备忘录的重要性。那些突如其来的灵感、重要的会议提醒、甚至是生活中的琐碎小事,我们都习惯性地记录在备忘录里。但当我决定从iPhone转向华为时,一个问题困扰了我:如何将那些珍贵的备…

1.【分布式】分布式事务详解

分布式事务 1.分布式事务是什么?数据库事务 2.分布式事务产生的原因?存储层拆分服务层拆分 3.分布式事务解决方案4.分布式事务有哪些开源组件SeateTCC 分布式服务组件基于消息补偿的最终一致性 5.两阶段提交,三阶段协议详解二阶段提交协议三阶…

云服务器 nginx自启动、mysql自启动、pyhton后端自启动

nginx自启动 方法一: 1、建立启动文件 vim /usr/lib/systemd/system/nginx.service [Unit] Descriptionnginx - high performance web server Afternetwork.target remote-fs.target nss-lookup.target[Service] Typeforking ExecStart/usr/local/nginx/sbin/ng…

Axure中继器完成表格的增删改查的自定义元件(三列表格与十列表格)

目录 一、中继器 1.1 定义 1.2 特点 1.3 适用场景 二、三列表格增删改查 2.1 实现思路 2.2 效果演示 三、十列表格增删改查 3.1 实现思路 3.2 效果演示 一、中继器 1.1 定义 在Axure中,"中继器"通常指的是界面设计中的一个元素,用…

Android的组件、布局学习

介绍 公司组织架构调整,项目组需要承接其他项目组的android项目,负责维护和开发新需求,故学习下基础语法和项目开发。 组件学习 Toolbarheader布局部分 就是app最顶部的部分 他的显示与否,是与F:\androidProject\android_lear…

issue阶段的选择电路的实现

1-of-M的仲裁电路 为什么要实现oldest-first 功能的仲裁呢? 这是考虑到越是旧的指令,和它存在相关性的指令也就越多,因此优先执行最旧的指令,则可以唤醒更多的指令,能够有效地提高处理器执行指令的并行度,而且最旧的指…

JNDI注入Log4jFastJson白盒审计不回显处理

目录 0x00 前言 0x01 Maven 仓库及配置 0x02 JNDI 注入简介 0x03 Java-第三方组件-Log4J&JNDI 0x04 Java-第三方组件-FastJson&反射 0x05 白盒审计 - FastJson 0x06 白盒审计 - Log4j 0x07 不回显的处理方法 0x00 前言 希望和各位大佬一起学习,如果…

通用的java中部分方式实现List<自定义对象>转为List<Map>

自定义类 /*** date 2023/12/19 11:20*/ public class Person {private String name;private String sex;public Person() {}public Person(String name, String sex) {this.name name;this.sex sex;}public String getName() {return name;}public String getSex() {return…

单片机应用实例:LED显示电脑电子钟

本例介绍一种用LED制作的电脑电子钟(电脑万年历)。其制作完成装潢后的照片如下图: 上图中,年、月、日及时间选用的是1.2寸共阳数码管,星期选用的是2.3寸数码管,温度选用的是0.5寸数码管,也可根据…

国产ToolLLM的课代表---OpenBMB机构(清华NLP)旗下ToolBench的安装部署与运行(附各种填坑说明)

ToolBench项目可以理解为一个能直接提供训练ToolLLM的平台,该平台同时构建了ToolLLM的一个开源训练指令集。,该项目是OpenBMB机构(面壁智能与清华NLP联合成立)旗下的一款产品,OpenBMB机构名下还同时拥有另外一款明星产…