智能优化算法应用:基于黑寡妇算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于黑寡妇算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于黑寡妇算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.黑寡妇算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用黑寡妇算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.黑寡妇算法

黑寡妇算法原理请参考:https://blog.csdn.net/u011835903/article/details/120438171
黑寡妇算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

黑寡妇算法参数如下:

%% 设定黑寡妇优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明黑寡妇算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/288538.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【ECharts】折线图

文章目录 折线图1折线图2折线图3示例 参考: Echarts官网 Echarts 配置项 折线图1 带X轴、Y轴标记线,其中X轴是’category’ 类目轴,适用于离散的类目数据。 let myChart echarts.init(this.$refs.line_chart2); let yList [400, 500, 6…

QEMU源码全解析 —— virtio(19)

接前一篇文章: 上回书继续讲解virtio_pci_driver的probe回调函数virtio_pci_probe(),在讲到第5段代码的时候, if (force_legacy) {rc virtio_pci_legacy_probe(vp_dev);/* Also try modern mode if we cant map BAR0 (no IO space). */if (r…

探索数据宇宙之飞船 -- python进阶函数numpy

导读:NumPy以其强大的多维数组对象和广泛的数学函数库著称。这些特性使得NumPy成为不仅在学术研究,也在工业界广泛应用的工具。无论是机器学习算法的开发、数据分析、还是复杂的数学模型的构建,NumPy都扮演着举足轻重的角色。 目录 Numpy简…

凝思虚拟机网络配置

1、输入验证码激活,不激活不能使用网络服务 2、启用网卡 ifconfig eth0 up 3、配置网络 vi /etc/network/interfaces,填写网卡eth0相关信息 auto eth0 allow-hotplug eth0 iface eth0 inet static address 10.1.104.210 netmask 255.255.0.0…

2-负载均衡、反向代理

负载均衡、反向代理 upstream server即上游服务器,指Nginx负载均衡到的处理业务的服务器,也可以称之为real server,即真实处理业务的服务器。 对于负载均衡我们要关心的几个方面如下: 上游服务器配置:使用upstream server配置上…

2023年中国法拍房用户画像和数据分析

法拍房主要平台 法拍房主要平台有3家,分别是阿里、京东和北交互联平台。目前官方认定纳入网络司法拍卖的平台共有7家,其中阿里资产司法拍卖平台的挂拍量最大。 阿里法拍房 阿里法拍房数据显示2017年,全国法拍房9000套;2018年&a…

C++ 图论之树的重心和直径

1. 重心 什么是树的重心? 物理学而言,重心是指地球对物体中每一微小部分引力的合力作用点,物体受力最集中的那一个点。数学上的重心是指三角形的三条中线的交点。 树的重心也称为质点,有一个很官方的定义:如果在树中…

【jvm从入门到实战】(九) 垃圾回收(2)-垃圾回收器

垃圾回收器是垃圾回收算法的具体实现。 由于垃圾回收器分为年轻代和老年代,除了G1之外其他垃圾回收器必须成对组合进行使用 垃圾回收器的组合使用关系图如下。 常用的组合如下: Serial(新生代) Serial Old(老年代) Pa…

嵌入式串口输入详细实例

学习目标 掌握串口初始化流程掌握串口输出单个字符掌握串口输出字符串掌握通过串口printf熟练掌握串口开发流程学习内容 需求 串口循环输出内容到PC机。 串口数据发送 添加Usart功能。 首先,选中Firmware,鼠标右键,点击Manage Project Items 接着,将gd32f4xx_usart.c添…

爱心集市,走进黄埔区老人院

为了满足老人的日常生活需求,提升他们的生活质量,将便民服务下沉到黄埔区老人院,让老人能在家门口享受到务实亲切的便民服务。12月14日上午,黄埔区平安促进会联合黄埔区老人院社工部在黄埔区老人院开展“惠捷购,乐生活…

万兆网络之疑难杂症(一)

症状:电话线测线仪4芯全亮,插上话机不亮 由于装修方没有按要求布线,导致没有电话线用,因此分网线用于电话线 测试网线8芯全亮,分四芯用端子接电话线,再压电话线水晶头,再测水晶头全亮&#xf…

【uniapp】uniapp中本地存储sqlite数据库保姆级使用教程(附完整代码和注释)

数据库请求接口封装 uniapp中提供了plus.sqlite接口,在这里我们对常用的数据库请求操作进行了二次封装 这里的dbName、dbPath、recordsTable 可以根据你的需求自己命名 module.exports {/** * type {String} 数据库名称*/dbName: salary,/*** 数据库地址* type {…